k1h0 commited on
Commit
a96d6e6
·
verified ·
1 Parent(s): 844d92e

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: deepseek-ai/deepseek-coder-7b-instruct-v1.5
5
+ tags:
6
+ - llama-factory
7
+ - freeze
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: deepseek_nlx_8_1
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # deepseek_nlx_8_1
18
+
19
+ This model is a fine-tuned version of [deepseek-ai/deepseek-coder-7b-instruct-v1.5](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5) on the codes_nlx_over81 dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 4
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 512
46
+ - total_eval_batch_size: 32
47
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine
49
+ - num_epochs: 1.0
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.48.2
58
+ - Pytorch 2.5.1+cu124
59
+ - Datasets 3.2.0
60
+ - Tokenizers 0.21.0
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.975609756097561,
3
+ "num_input_tokens_seen": 31457280,
4
+ "total_flos": 1.2251230144089293e+18,
5
+ "train_loss": 0.6374592224756876,
6
+ "train_runtime": 1520.8651,
7
+ "train_samples_per_second": 5.175,
8
+ "train_steps_per_second": 0.01
9
+ }
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 100000,
9
+ "eos_token_id": 100015,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 11008,
15
+ "max_position_embeddings": 4096,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 30,
20
+ "num_key_value_heads": 32,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-06,
23
+ "rope_scaling": {
24
+ "factor": 1.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 4096,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 10000.0,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.48.2",
34
+ "use_cache": false,
35
+ "vocab_size": 102400
36
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100000,
4
+ "eos_token_id": 100015,
5
+ "transformers_version": "4.48.2"
6
+ }
llamaboard_config.yaml ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ top.booster: liger_kernel
2
+ top.checkpoint_path: null
3
+ top.finetuning_type: freeze
4
+ top.model_name: DeepSeek-Coder-7B-Instruct
5
+ top.quantization_bit: none
6
+ top.quantization_method: bitsandbytes
7
+ top.rope_scaling: llama3
8
+ top.template: deepseekcoder
9
+ train.additional_target: ''
10
+ train.apollo_rank: 256
11
+ train.apollo_scale: 1
12
+ train.apollo_target: all
13
+ train.apollo_update_interval: 200
14
+ train.badam_mode: layer
15
+ train.badam_switch_interval: 50
16
+ train.badam_switch_mode: ascending
17
+ train.badam_update_ratio: 0.05
18
+ train.batch_size: 16
19
+ train.compute_type: bf16
20
+ train.create_new_adapter: false
21
+ train.cutoff_len: 4096
22
+ train.dataset:
23
+ - codes_nlx_over81
24
+ train.dataset_dir: data
25
+ train.ds_offload: false
26
+ train.ds_stage: none
27
+ train.extra_args: '{}'
28
+ train.freeze_extra_modules: ''
29
+ train.freeze_trainable_layers: 2
30
+ train.freeze_trainable_modules: all
31
+ train.galore_rank: 16
32
+ train.galore_scale: 2
33
+ train.galore_target: all
34
+ train.galore_update_interval: 200
35
+ train.gradient_accumulation_steps: 8
36
+ train.learning_rate: 5e-5
37
+ train.logging_steps: 1
38
+ train.lora_alpha: 16
39
+ train.lora_dropout: 0
40
+ train.lora_rank: 8
41
+ train.lora_target: ''
42
+ train.loraplus_lr_ratio: 0
43
+ train.lr_scheduler_type: cosine
44
+ train.mask_history: false
45
+ train.max_grad_norm: '1.0'
46
+ train.max_samples: '50000000'
47
+ train.neat_packing: true
48
+ train.neftune_alpha: 0
49
+ train.num_train_epochs: '1'
50
+ train.packing: true
51
+ train.ppo_score_norm: false
52
+ train.ppo_whiten_rewards: false
53
+ train.pref_beta: 0.1
54
+ train.pref_ftx: 0
55
+ train.pref_loss: sigmoid
56
+ train.report_to:
57
+ - none
58
+ train.resize_vocab: false
59
+ train.reward_model: null
60
+ train.save_steps: 500
61
+ train.swanlab_api_key: ''
62
+ train.swanlab_mode: cloud
63
+ train.swanlab_project: llamafactory
64
+ train.swanlab_run_name: ''
65
+ train.swanlab_workspace: ''
66
+ train.train_on_prompt: false
67
+ train.training_stage: Supervised Fine-Tuning
68
+ train.use_apollo: true
69
+ train.use_badam: false
70
+ train.use_dora: false
71
+ train.use_galore: false
72
+ train.use_llama_pro: false
73
+ train.use_pissa: false
74
+ train.use_rslora: false
75
+ train.use_swanlab: false
76
+ train.val_size: 0
77
+ train.warmup_steps: 0
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28aba7f82f5ce656674a3e922d68c0b7bd12d2f2e6da09e47fa72eec539c53c2
3
+ size 4987202208
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9e815d13d98a67f7370ade76666bfa350f8083dea55f75a60050d05d8bb0728
3
+ size 4980945440
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfca991763e92c185f8689e02040cfb3b0d5c303544c6a1b9c18f642ecf08d90
3
+ size 4662148920
model.safetensors.index.json ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14630264832
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
225
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
226
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
227
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
228
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
229
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
230
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
231
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
232
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
233
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
234
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
235
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
236
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
237
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
238
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
239
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
240
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
241
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
242
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.norm.weight": "model-00003-of-00003.safetensors"
279
+ }
280
+ }
running_log.txt ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [INFO|2025-05-29 23:14:31] tokenization_utils_base.py:2034 >> loading file tokenizer.model from cache at None
2
+
3
+ [INFO|2025-05-29 23:14:31] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/tokenizer.json
4
+
5
+ [INFO|2025-05-29 23:14:31] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at None
6
+
7
+ [INFO|2025-05-29 23:14:31] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at None
8
+
9
+ [INFO|2025-05-29 23:14:31] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/tokenizer_config.json
10
+
11
+ [INFO|2025-05-29 23:14:31] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
12
+
13
+ [INFO|2025-05-29 23:14:32] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
14
+
15
+ [INFO|2025-05-29 23:14:32] logging.py:157 >> Loading dataset Codes_query_filtered_330k_ns_over8_1.json...
16
+
17
+ [INFO|2025-05-29 23:14:48] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/config.json
18
+
19
+ [INFO|2025-05-29 23:14:48] configuration_utils.py:768 >> Model config LlamaConfig {
20
+ "_name_or_path": "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
21
+ "architectures": [
22
+ "LlamaForCausalLM"
23
+ ],
24
+ "attention_bias": false,
25
+ "attention_dropout": 0.0,
26
+ "bos_token_id": 100000,
27
+ "eos_token_id": 100015,
28
+ "head_dim": 128,
29
+ "hidden_act": "silu",
30
+ "hidden_size": 4096,
31
+ "initializer_range": 0.02,
32
+ "intermediate_size": 11008,
33
+ "max_position_embeddings": 4096,
34
+ "mlp_bias": false,
35
+ "model_type": "llama",
36
+ "num_attention_heads": 32,
37
+ "num_hidden_layers": 30,
38
+ "num_key_value_heads": 32,
39
+ "pretraining_tp": 1,
40
+ "rms_norm_eps": 1e-06,
41
+ "rope_scaling": null,
42
+ "rope_theta": 10000.0,
43
+ "tie_word_embeddings": false,
44
+ "torch_dtype": "bfloat16",
45
+ "transformers_version": "4.48.2",
46
+ "use_cache": true,
47
+ "vocab_size": 102400
48
+ }
49
+
50
+
51
+ [WARNING|2025-05-29 23:14:48] logging.py:162 >> Input length is smaller than max length. Consider increase input length.
52
+
53
+ [INFO|2025-05-29 23:14:48] logging.py:157 >> Using llama3 scaling strategy and setting scaling factor to 1.0.
54
+
55
+ [INFO|2025-05-29 23:14:48] logging.py:157 >> Using block diagonal attention for sequence packing without cross-attention.
56
+
57
+ [INFO|2025-05-29 23:14:48] logging.py:157 >> Liger kernel has been applied to the model.
58
+
59
+ [INFO|2025-05-29 23:14:48] modeling_utils.py:3904 >> loading weights file model.safetensors from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/model.safetensors.index.json
60
+
61
+ [INFO|2025-05-29 23:14:48] modeling_utils.py:1582 >> Instantiating LlamaForCausalLM model under default dtype torch.bfloat16.
62
+
63
+ [INFO|2025-05-29 23:14:48] configuration_utils.py:1140 >> Generate config GenerationConfig {
64
+ "bos_token_id": 100000,
65
+ "eos_token_id": 100015
66
+ }
67
+
68
+
69
+ [INFO|2025-05-29 23:14:52] modeling_utils.py:4888 >> All model checkpoint weights were used when initializing LlamaForCausalLM.
70
+
71
+
72
+ [INFO|2025-05-29 23:14:52] modeling_utils.py:4896 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at deepseek-ai/deepseek-coder-7b-instruct-v1.5.
73
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training.
74
+
75
+ [INFO|2025-05-29 23:14:52] configuration_utils.py:1095 >> loading configuration file generation_config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/generation_config.json
76
+
77
+ [INFO|2025-05-29 23:14:52] configuration_utils.py:1140 >> Generate config GenerationConfig {
78
+ "bos_token_id": 100000,
79
+ "eos_token_id": 100015
80
+ }
81
+
82
+
83
+ [INFO|2025-05-29 23:14:52] logging.py:157 >> Gradient checkpointing enabled.
84
+
85
+ [INFO|2025-05-29 23:14:52] logging.py:157 >> Using torch SDPA for faster training and inference.
86
+
87
+ [INFO|2025-05-29 23:14:52] logging.py:157 >> Upcasting trainable params to float32.
88
+
89
+ [INFO|2025-05-29 23:14:52] logging.py:157 >> Fine-tuning method: Freeze
90
+
91
+ [INFO|2025-05-29 23:14:52] logging.py:157 >> Set trainable layers: .28.,.29.
92
+
93
+ [INFO|2025-05-29 23:14:52] logging.py:157 >> trainable params: 404,766,720 || all params: 6,910,365,696 || trainable%: 5.8574
94
+
95
+ [INFO|2025-05-29 23:14:52] trainer.py:741 >> Using auto half precision backend
96
+
97
+ [INFO|2025-05-29 23:14:52] logging.py:157 >> Found linear modules: down_proj,up_proj,q_proj,v_proj,gate_proj,o_proj,k_proj
98
+
99
+ [INFO|2025-05-29 23:14:52] logging.py:157 >> Using APOLLO optimizer with args: {'rank': 256, 'proj': 'random', 'proj_type': 'std', 'update_proj_gap': 200, 'scale': 1, 'scale_type': 'channel', 'scale_front': False}.
100
+
101
+ [INFO|2025-05-29 23:14:52] trainer.py:2369 >> ***** Running training *****
102
+
103
+ [INFO|2025-05-29 23:14:52] trainer.py:2370 >> Num examples = 7,871
104
+
105
+ [INFO|2025-05-29 23:14:52] trainer.py:2371 >> Num Epochs = 1
106
+
107
+ [INFO|2025-05-29 23:14:52] trainer.py:2372 >> Instantaneous batch size per device = 16
108
+
109
+ [INFO|2025-05-29 23:14:52] trainer.py:2375 >> Total train batch size (w. parallel, distributed & accumulation) = 512
110
+
111
+ [INFO|2025-05-29 23:14:52] trainer.py:2376 >> Gradient Accumulation steps = 8
112
+
113
+ [INFO|2025-05-29 23:14:52] trainer.py:2377 >> Total optimization steps = 15
114
+
115
+ [INFO|2025-05-29 23:14:52] trainer.py:2378 >> Number of trainable parameters = 404,766,720
116
+
117
+ [INFO|2025-05-29 23:16:39] logging.py:157 >> {'loss': 0.7344, 'learning_rate': 4.9454e-05, 'epoch': 0.07, 'throughput': 19884.80}
118
+
119
+ [INFO|2025-05-29 23:18:18] logging.py:157 >> {'loss': 0.7113, 'learning_rate': 4.7839e-05, 'epoch': 0.13, 'throughput': 20489.52}
120
+
121
+ [INFO|2025-05-29 23:19:58] logging.py:157 >> {'loss': 0.7009, 'learning_rate': 4.5225e-05, 'epoch': 0.20, 'throughput': 20677.48}
122
+
123
+ [INFO|2025-05-29 23:21:37] logging.py:157 >> {'loss': 0.6704, 'learning_rate': 4.1728e-05, 'epoch': 0.26, 'throughput': 20771.66}
124
+
125
+ [INFO|2025-05-29 23:23:17] logging.py:157 >> {'loss': 0.6504, 'learning_rate': 3.7500e-05, 'epoch': 0.33, 'throughput': 20829.21}
126
+
127
+ [INFO|2025-05-29 23:24:56] logging.py:157 >> {'loss': 0.6217, 'learning_rate': 3.2725e-05, 'epoch': 0.39, 'throughput': 20867.75}
128
+
129
+ [INFO|2025-05-29 23:26:36] logging.py:157 >> {'loss': 0.6052, 'learning_rate': 2.7613e-05, 'epoch': 0.46, 'throughput': 20897.01}
130
+
131
+ [INFO|2025-05-29 23:28:15] logging.py:157 >> {'loss': 0.6302, 'learning_rate': 2.2387e-05, 'epoch': 0.52, 'throughput': 20915.80}
132
+
133
+ [INFO|2025-05-29 23:29:55] logging.py:157 >> {'loss': 0.5964, 'learning_rate': 1.7275e-05, 'epoch': 0.59, 'throughput': 20930.91}
134
+
135
+ [INFO|2025-05-29 23:31:35] logging.py:157 >> {'loss': 0.6233, 'learning_rate': 1.2500e-05, 'epoch': 0.65, 'throughput': 20943.31}
136
+
137
+ [INFO|2025-05-29 23:33:14] logging.py:157 >> {'loss': 0.5964, 'learning_rate': 8.2717e-06, 'epoch': 0.72, 'throughput': 20954.49}
138
+
139
+ [INFO|2025-05-29 23:34:54] logging.py:157 >> {'loss': 0.6106, 'learning_rate': 4.7746e-06, 'epoch': 0.78, 'throughput': 20962.99}
140
+
141
+ [INFO|2025-05-29 23:36:33] logging.py:157 >> {'loss': 0.5916, 'learning_rate': 2.1614e-06, 'epoch': 0.85, 'throughput': 20970.47}
142
+
143
+ [INFO|2025-05-29 23:38:13] logging.py:157 >> {'loss': 0.5893, 'learning_rate': 5.4631e-07, 'epoch': 0.91, 'throughput': 20976.44}
144
+
145
+ [INFO|2025-05-29 23:39:52] logging.py:157 >> {'loss': 0.6298, 'learning_rate': 0.0000e+00, 'epoch': 0.98, 'throughput': 20983.82}
146
+
147
+ [INFO|2025-05-29 23:39:52] trainer.py:3910 >> Saving model checkpoint to saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_nlx_8_1/checkpoint-15
148
+
149
+ [INFO|2025-05-29 23:39:52] configuration_utils.py:420 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_nlx_8_1/checkpoint-15/config.json
150
+
151
+ [INFO|2025-05-29 23:39:52] configuration_utils.py:909 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_nlx_8_1/checkpoint-15/generation_config.json
152
+
153
+ [INFO|2025-05-29 23:40:13] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 3 checkpoint shards. You can find where each parameters has been saved in the index located at saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_nlx_8_1/checkpoint-15/model.safetensors.index.json.
154
+
155
+ [INFO|2025-05-29 23:40:13] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_nlx_8_1/checkpoint-15/tokenizer_config.json
156
+
157
+ [INFO|2025-05-29 23:40:13] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_nlx_8_1/checkpoint-15/special_tokens_map.json
158
+
159
+ [INFO|2025-05-29 23:40:13] trainer.py:2643 >>
160
+
161
+ Training completed. Do not forget to share your model on huggingface.co/models =)
162
+
163
+
164
+
165
+ [INFO|2025-05-29 23:40:13] trainer.py:3910 >> Saving model checkpoint to saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_nlx_8_1
166
+
167
+ [INFO|2025-05-29 23:40:13] configuration_utils.py:420 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_nlx_8_1/config.json
168
+
169
+ [INFO|2025-05-29 23:40:13] configuration_utils.py:909 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_nlx_8_1/generation_config.json
170
+
171
+ [INFO|2025-05-29 23:40:34] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 3 checkpoint shards. You can find where each parameters has been saved in the index located at saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_nlx_8_1/model.safetensors.index.json.
172
+
173
+ [INFO|2025-05-29 23:40:34] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_nlx_8_1/tokenizer_config.json
174
+
175
+ [INFO|2025-05-29 23:40:34] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_nlx_8_1/special_tokens_map.json
176
+
177
+ [WARNING|2025-05-29 23:40:34] logging.py:162 >> No metric eval_loss to plot.
178
+
179
+ [WARNING|2025-05-29 23:40:34] logging.py:162 >> No metric eval_accuracy to plot.
180
+
181
+ [INFO|2025-05-29 23:40:34] modelcard.py:449 >> Dropping the following result as it does not have all the necessary fields:
182
+ {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
183
+
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|EOT|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end▁of▁sentence|>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "100000": {
7
+ "content": "<|begin▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "100001": {
15
+ "content": "<|end▁of▁sentence|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "100002": {
23
+ "content": "ø",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "100003": {
31
+ "content": "ö",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "100004": {
39
+ "content": "ú",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "100005": {
47
+ "content": "ÿ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "100006": {
55
+ "content": "õ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "100007": {
63
+ "content": "÷",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "100008": {
71
+ "content": "û",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "100009": {
79
+ "content": "ý",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "100010": {
87
+ "content": "À",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "100011": {
95
+ "content": "ù",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "100012": {
103
+ "content": "Á",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "100013": {
111
+ "content": "þ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "100014": {
119
+ "content": "ü",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "100015": {
127
+ "content": "<|EOT|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": true
133
+ }
134
+ },
135
+ "bos_token": "<|begin▁of▁sentence|>",
136
+ "chat_template": "{% if not add_generation_prompt is defined %}\n{% set add_generation_prompt = false %}\n{% endif %}\n{%- set ns = namespace(found=false) -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set ns.found = true -%}\n {%- endif -%}\n{%- endfor -%}\n{{bos_token}}{%- if not ns.found -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{% if add_generation_prompt %}\n{{'### Response:'}}\n{% endif %}",
137
+ "clean_up_tokenization_spaces": false,
138
+ "eos_token": "<|EOT|>",
139
+ "extra_special_tokens": {},
140
+ "legacy": true,
141
+ "model_max_length": 4096,
142
+ "pad_token": "<|end▁of▁sentence|>",
143
+ "padding_side": "right",
144
+ "sp_model_kwargs": {},
145
+ "split_special_tokens": false,
146
+ "tokenizer_class": "LlamaTokenizer",
147
+ "unk_token": null,
148
+ "use_default_system_prompt": false
149
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.975609756097561,
3
+ "num_input_tokens_seen": 31457280,
4
+ "total_flos": 1.2251230144089293e+18,
5
+ "train_loss": 0.6374592224756876,
6
+ "train_runtime": 1520.8651,
7
+ "train_samples_per_second": 5.175,
8
+ "train_steps_per_second": 0.01
9
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 15, "loss": 0.7344, "lr": 4.9453690018345144e-05, "epoch": 0.06504065040650407, "percentage": 6.67, "elapsed_time": "0:01:45", "remaining_time": "0:24:36", "throughput": 19884.8, "total_tokens": 2097152}
2
+ {"current_steps": 2, "total_steps": 15, "loss": 0.7113, "lr": 4.783863644106502e-05, "epoch": 0.13008130081300814, "percentage": 13.33, "elapsed_time": "0:03:24", "remaining_time": "0:22:10", "throughput": 20489.52, "total_tokens": 4194304}
3
+ {"current_steps": 3, "total_steps": 15, "loss": 0.7009, "lr": 4.522542485937369e-05, "epoch": 0.1951219512195122, "percentage": 20.0, "elapsed_time": "0:05:04", "remaining_time": "0:20:17", "throughput": 20677.48, "total_tokens": 6291456}
4
+ {"current_steps": 4, "total_steps": 15, "loss": 0.6704, "lr": 4.172826515897146e-05, "epoch": 0.2601626016260163, "percentage": 26.67, "elapsed_time": "0:06:43", "remaining_time": "0:18:30", "throughput": 20771.66, "total_tokens": 8388608}
5
+ {"current_steps": 5, "total_steps": 15, "loss": 0.6504, "lr": 3.7500000000000003e-05, "epoch": 0.3252032520325203, "percentage": 33.33, "elapsed_time": "0:08:23", "remaining_time": "0:16:46", "throughput": 20829.21, "total_tokens": 10485760}
6
+ {"current_steps": 6, "total_steps": 15, "loss": 0.6217, "lr": 3.272542485937369e-05, "epoch": 0.3902439024390244, "percentage": 40.0, "elapsed_time": "0:10:02", "remaining_time": "0:15:04", "throughput": 20867.75, "total_tokens": 12582912}
7
+ {"current_steps": 7, "total_steps": 15, "loss": 0.6052, "lr": 2.761321158169134e-05, "epoch": 0.45528455284552843, "percentage": 46.67, "elapsed_time": "0:11:42", "remaining_time": "0:13:22", "throughput": 20897.01, "total_tokens": 14680064}
8
+ {"current_steps": 8, "total_steps": 15, "loss": 0.6302, "lr": 2.238678841830867e-05, "epoch": 0.5203252032520326, "percentage": 53.33, "elapsed_time": "0:13:22", "remaining_time": "0:11:41", "throughput": 20915.8, "total_tokens": 16777216}
9
+ {"current_steps": 9, "total_steps": 15, "loss": 0.5964, "lr": 1.7274575140626318e-05, "epoch": 0.5853658536585366, "percentage": 60.0, "elapsed_time": "0:15:01", "remaining_time": "0:10:01", "throughput": 20930.91, "total_tokens": 18874368}
10
+ {"current_steps": 10, "total_steps": 15, "loss": 0.6233, "lr": 1.2500000000000006e-05, "epoch": 0.6504065040650406, "percentage": 66.67, "elapsed_time": "0:16:41", "remaining_time": "0:08:20", "throughput": 20943.31, "total_tokens": 20971520}
11
+ {"current_steps": 11, "total_steps": 15, "loss": 0.5964, "lr": 8.271734841028553e-06, "epoch": 0.7154471544715447, "percentage": 73.33, "elapsed_time": "0:18:20", "remaining_time": "0:06:40", "throughput": 20954.49, "total_tokens": 23068672}
12
+ {"current_steps": 12, "total_steps": 15, "loss": 0.6106, "lr": 4.7745751406263165e-06, "epoch": 0.7804878048780488, "percentage": 80.0, "elapsed_time": "0:20:00", "remaining_time": "0:05:00", "throughput": 20962.99, "total_tokens": 25165824}
13
+ {"current_steps": 13, "total_steps": 15, "loss": 0.5916, "lr": 2.1613635589349756e-06, "epoch": 0.8455284552845529, "percentage": 86.67, "elapsed_time": "0:21:40", "remaining_time": "0:03:20", "throughput": 20970.47, "total_tokens": 27262976}
14
+ {"current_steps": 14, "total_steps": 15, "loss": 0.5893, "lr": 5.463099816548579e-07, "epoch": 0.9105691056910569, "percentage": 93.33, "elapsed_time": "0:23:19", "remaining_time": "0:01:39", "throughput": 20976.44, "total_tokens": 29360128}
15
+ {"current_steps": 15, "total_steps": 15, "loss": 0.6298, "lr": 0.0, "epoch": 0.975609756097561, "percentage": 100.0, "elapsed_time": "0:24:59", "remaining_time": "0:00:00", "throughput": 20983.82, "total_tokens": 31457280}
16
+ {"current_steps": 15, "total_steps": 15, "epoch": 0.975609756097561, "percentage": 100.0, "elapsed_time": "0:25:19", "remaining_time": "0:00:00", "throughput": 20697.55, "total_tokens": 31457280}
trainer_state.json ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.975609756097561,
5
+ "eval_steps": 500,
6
+ "global_step": 15,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.06504065040650407,
13
+ "grad_norm": 0.5584165453910828,
14
+ "learning_rate": 4.9453690018345144e-05,
15
+ "loss": 0.7344,
16
+ "num_input_tokens_seen": 2097152,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.13008130081300814,
21
+ "grad_norm": 0.4928242862224579,
22
+ "learning_rate": 4.783863644106502e-05,
23
+ "loss": 0.7113,
24
+ "num_input_tokens_seen": 4194304,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.1951219512195122,
29
+ "grad_norm": 0.4566553831100464,
30
+ "learning_rate": 4.522542485937369e-05,
31
+ "loss": 0.7009,
32
+ "num_input_tokens_seen": 6291456,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.2601626016260163,
37
+ "grad_norm": 0.38513678312301636,
38
+ "learning_rate": 4.172826515897146e-05,
39
+ "loss": 0.6704,
40
+ "num_input_tokens_seen": 8388608,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.3252032520325203,
45
+ "grad_norm": 0.36934641003608704,
46
+ "learning_rate": 3.7500000000000003e-05,
47
+ "loss": 0.6504,
48
+ "num_input_tokens_seen": 10485760,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.3902439024390244,
53
+ "grad_norm": 0.33891424536705017,
54
+ "learning_rate": 3.272542485937369e-05,
55
+ "loss": 0.6217,
56
+ "num_input_tokens_seen": 12582912,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.45528455284552843,
61
+ "grad_norm": 0.30929532647132874,
62
+ "learning_rate": 2.761321158169134e-05,
63
+ "loss": 0.6052,
64
+ "num_input_tokens_seen": 14680064,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.5203252032520326,
69
+ "grad_norm": 0.28951436281204224,
70
+ "learning_rate": 2.238678841830867e-05,
71
+ "loss": 0.6302,
72
+ "num_input_tokens_seen": 16777216,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.5853658536585366,
77
+ "grad_norm": 0.29053160548210144,
78
+ "learning_rate": 1.7274575140626318e-05,
79
+ "loss": 0.5964,
80
+ "num_input_tokens_seen": 18874368,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.6504065040650406,
85
+ "grad_norm": 0.2903811037540436,
86
+ "learning_rate": 1.2500000000000006e-05,
87
+ "loss": 0.6233,
88
+ "num_input_tokens_seen": 20971520,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.7154471544715447,
93
+ "grad_norm": 0.28426122665405273,
94
+ "learning_rate": 8.271734841028553e-06,
95
+ "loss": 0.5964,
96
+ "num_input_tokens_seen": 23068672,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.7804878048780488,
101
+ "grad_norm": 0.25174424052238464,
102
+ "learning_rate": 4.7745751406263165e-06,
103
+ "loss": 0.6106,
104
+ "num_input_tokens_seen": 25165824,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.8455284552845529,
109
+ "grad_norm": 0.24576599895954132,
110
+ "learning_rate": 2.1613635589349756e-06,
111
+ "loss": 0.5916,
112
+ "num_input_tokens_seen": 27262976,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.9105691056910569,
117
+ "grad_norm": 0.24116040766239166,
118
+ "learning_rate": 5.463099816548579e-07,
119
+ "loss": 0.5893,
120
+ "num_input_tokens_seen": 29360128,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.975609756097561,
125
+ "grad_norm": 0.23365961015224457,
126
+ "learning_rate": 0.0,
127
+ "loss": 0.6298,
128
+ "num_input_tokens_seen": 31457280,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.975609756097561,
133
+ "num_input_tokens_seen": 31457280,
134
+ "step": 15,
135
+ "total_flos": 1.2251230144089293e+18,
136
+ "train_loss": 0.6374592224756876,
137
+ "train_runtime": 1520.8651,
138
+ "train_samples_per_second": 5.175,
139
+ "train_steps_per_second": 0.01
140
+ }
141
+ ],
142
+ "logging_steps": 1,
143
+ "max_steps": 15,
144
+ "num_input_tokens_seen": 31457280,
145
+ "num_train_epochs": 1,
146
+ "save_steps": 500,
147
+ "stateful_callbacks": {
148
+ "TrainerControl": {
149
+ "args": {
150
+ "should_epoch_stop": false,
151
+ "should_evaluate": false,
152
+ "should_log": false,
153
+ "should_save": true,
154
+ "should_training_stop": true
155
+ },
156
+ "attributes": {}
157
+ }
158
+ },
159
+ "total_flos": 1.2251230144089293e+18,
160
+ "train_batch_size": 16,
161
+ "trial_name": null,
162
+ "trial_params": null
163
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c31c0e0a45cba53df68aae4c13ded7321d68db719cad9033a139e18114bfdbcb
3
+ size 5688
training_args.yaml ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apollo_rank: 256
2
+ apollo_scale: 1
3
+ apollo_target: all
4
+ apollo_update_interval: 200
5
+ bf16: true
6
+ cutoff_len: 4096
7
+ dataset: codes_nlx_over81
8
+ dataset_dir: data
9
+ ddp_timeout: 180000000
10
+ do_train: true
11
+ enable_liger_kernel: true
12
+ finetuning_type: freeze
13
+ flash_attn: auto
14
+ freeze_trainable_layers: 2
15
+ freeze_trainable_modules: all
16
+ gradient_accumulation_steps: 8
17
+ include_num_input_tokens_seen: true
18
+ learning_rate: 5.0e-05
19
+ logging_steps: 1
20
+ lr_scheduler_type: cosine
21
+ max_grad_norm: 1.0
22
+ max_samples: 50000000
23
+ model_name_or_path: deepseek-ai/deepseek-coder-7b-instruct-v1.5
24
+ neat_packing: true
25
+ num_train_epochs: 1.0
26
+ output_dir: saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_nlx_8_1
27
+ packing: true
28
+ per_device_train_batch_size: 16
29
+ plot_loss: true
30
+ preprocessing_num_workers: 16
31
+ report_to: none
32
+ rope_scaling: llama3
33
+ save_steps: 500
34
+ stage: sft
35
+ template: deepseekcoder
36
+ trust_remote_code: true
37
+ use_apollo: true
38
+ warmup_steps: 0
training_loss.png ADDED