k1h0 commited on
Commit
8799709
·
verified ·
1 Parent(s): 92ad82f

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: deepseek-ai/deepseek-coder-7b-instruct-v1.5
5
+ tags:
6
+ - llama-factory
7
+ - freeze
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: deepseek_under8_nlx
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # deepseek_under8_nlx
18
+
19
+ This model is a fine-tuned version of [deepseek-ai/deepseek-coder-7b-instruct-v1.5](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5) on the codes_nlx_under8 dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 3
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 384
46
+ - total_eval_batch_size: 24
47
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine
49
+ - num_epochs: 1.0
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.48.2
58
+ - Pytorch 2.5.1+cu124
59
+ - Datasets 3.2.0
60
+ - Tokenizers 0.21.0
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9927007299270073,
3
+ "num_input_tokens_seen": 133693440,
4
+ "total_flos": 5.206772811237949e+18,
5
+ "train_loss": 0.5589800634804893,
6
+ "train_runtime": 13057.0702,
7
+ "train_samples_per_second": 2.516,
8
+ "train_steps_per_second": 0.007
9
+ }
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 100000,
9
+ "eos_token_id": 100015,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 11008,
15
+ "max_position_embeddings": 4096,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 30,
20
+ "num_key_value_heads": 32,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-06,
23
+ "rope_scaling": {
24
+ "factor": 1.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 4096,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 10000.0,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.48.2",
34
+ "use_cache": false,
35
+ "vocab_size": 102400
36
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100000,
4
+ "eos_token_id": 100015,
5
+ "transformers_version": "4.48.2"
6
+ }
llamaboard_config.yaml ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ top.booster: liger_kernel
2
+ top.checkpoint_path: null
3
+ top.finetuning_type: freeze
4
+ top.model_name: DeepSeek-Coder-7B-Instruct
5
+ top.quantization_bit: none
6
+ top.quantization_method: bitsandbytes
7
+ top.rope_scaling: llama3
8
+ top.template: deepseekcoder
9
+ train.additional_target: ''
10
+ train.apollo_rank: 256
11
+ train.apollo_scale: 1
12
+ train.apollo_target: all
13
+ train.apollo_update_interval: 200
14
+ train.badam_mode: layer
15
+ train.badam_switch_interval: 50
16
+ train.badam_switch_mode: ascending
17
+ train.badam_update_ratio: 0.05
18
+ train.batch_size: 16
19
+ train.compute_type: bf16
20
+ train.create_new_adapter: false
21
+ train.cutoff_len: 4096
22
+ train.dataset:
23
+ - codes_nlx_under8
24
+ train.dataset_dir: data
25
+ train.ds_offload: false
26
+ train.ds_stage: none
27
+ train.extra_args: '{}'
28
+ train.freeze_extra_modules: ''
29
+ train.freeze_trainable_layers: 2
30
+ train.freeze_trainable_modules: all
31
+ train.galore_rank: 16
32
+ train.galore_scale: 2
33
+ train.galore_target: all
34
+ train.galore_update_interval: 200
35
+ train.gradient_accumulation_steps: 8
36
+ train.learning_rate: 5e-5
37
+ train.logging_steps: 1
38
+ train.lora_alpha: 16
39
+ train.lora_dropout: 0
40
+ train.lora_rank: 8
41
+ train.lora_target: ''
42
+ train.loraplus_lr_ratio: 0
43
+ train.lr_scheduler_type: cosine
44
+ train.mask_history: false
45
+ train.max_grad_norm: '1.0'
46
+ train.max_samples: '50000000'
47
+ train.neat_packing: true
48
+ train.neftune_alpha: 0
49
+ train.num_train_epochs: '1'
50
+ train.packing: true
51
+ train.ppo_score_norm: false
52
+ train.ppo_whiten_rewards: false
53
+ train.pref_beta: 0.1
54
+ train.pref_ftx: 0
55
+ train.pref_loss: sigmoid
56
+ train.report_to:
57
+ - none
58
+ train.resize_vocab: false
59
+ train.reward_model: null
60
+ train.save_steps: 1000
61
+ train.swanlab_api_key: ''
62
+ train.swanlab_mode: cloud
63
+ train.swanlab_project: llamafactory
64
+ train.swanlab_run_name: ''
65
+ train.swanlab_workspace: ''
66
+ train.train_on_prompt: false
67
+ train.training_stage: Supervised Fine-Tuning
68
+ train.use_apollo: true
69
+ train.use_badam: false
70
+ train.use_dora: false
71
+ train.use_galore: false
72
+ train.use_llama_pro: true
73
+ train.use_pissa: false
74
+ train.use_rslora: false
75
+ train.use_swanlab: false
76
+ train.val_size: 0
77
+ train.warmup_steps: 0
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28aba7f82f5ce656674a3e922d68c0b7bd12d2f2e6da09e47fa72eec539c53c2
3
+ size 4987202208
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab33bb741d6e8ce4d1d422ce6a88f2e14eab013fd298562e78b513883eeb9be9
3
+ size 4980944400
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68317f4d83c42990a754a3366020ea005a95b211fc1e61a72cfab1f37174f8e5
3
+ size 4662149984
model.safetensors.index.json ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14630264832
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
225
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
226
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
227
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
228
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
229
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
230
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
231
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
232
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
233
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
234
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
235
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
236
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
237
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
238
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
239
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
240
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
241
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
242
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.norm.weight": "model-00003-of-00003.safetensors"
279
+ }
280
+ }
running_log.txt ADDED
@@ -0,0 +1,405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [INFO|2025-07-09 20:08:23] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/config.json
2
+
3
+ [INFO|2025-07-09 20:08:23] configuration_utils.py:768 >> Model config LlamaConfig {
4
+ "_name_or_path": "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
5
+ "architectures": [
6
+ "LlamaForCausalLM"
7
+ ],
8
+ "attention_bias": false,
9
+ "attention_dropout": 0.0,
10
+ "bos_token_id": 100000,
11
+ "eos_token_id": 100015,
12
+ "head_dim": 128,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 11008,
17
+ "max_position_embeddings": 4096,
18
+ "mlp_bias": false,
19
+ "model_type": "llama",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 30,
22
+ "num_key_value_heads": 32,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_scaling": null,
26
+ "rope_theta": 10000.0,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "bfloat16",
29
+ "transformers_version": "4.48.2",
30
+ "use_cache": true,
31
+ "vocab_size": 102400
32
+ }
33
+
34
+
35
+ [INFO|2025-07-09 20:08:23] tokenization_utils_base.py:2034 >> loading file tokenizer.model from cache at None
36
+
37
+ [INFO|2025-07-09 20:08:23] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/tokenizer.json
38
+
39
+ [INFO|2025-07-09 20:08:23] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at None
40
+
41
+ [INFO|2025-07-09 20:08:23] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at None
42
+
43
+ [INFO|2025-07-09 20:08:23] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/tokenizer_config.json
44
+
45
+ [INFO|2025-07-09 20:08:23] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
46
+
47
+ [INFO|2025-07-09 20:08:24] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
48
+
49
+ [INFO|2025-07-09 20:08:25] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/config.json
50
+
51
+ [INFO|2025-07-09 20:08:25] configuration_utils.py:768 >> Model config LlamaConfig {
52
+ "_name_or_path": "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
53
+ "architectures": [
54
+ "LlamaForCausalLM"
55
+ ],
56
+ "attention_bias": false,
57
+ "attention_dropout": 0.0,
58
+ "bos_token_id": 100000,
59
+ "eos_token_id": 100015,
60
+ "head_dim": 128,
61
+ "hidden_act": "silu",
62
+ "hidden_size": 4096,
63
+ "initializer_range": 0.02,
64
+ "intermediate_size": 11008,
65
+ "max_position_embeddings": 4096,
66
+ "mlp_bias": false,
67
+ "model_type": "llama",
68
+ "num_attention_heads": 32,
69
+ "num_hidden_layers": 30,
70
+ "num_key_value_heads": 32,
71
+ "pretraining_tp": 1,
72
+ "rms_norm_eps": 1e-06,
73
+ "rope_scaling": null,
74
+ "rope_theta": 10000.0,
75
+ "tie_word_embeddings": false,
76
+ "torch_dtype": "bfloat16",
77
+ "transformers_version": "4.48.2",
78
+ "use_cache": true,
79
+ "vocab_size": 102400
80
+ }
81
+
82
+
83
+ [INFO|2025-07-09 20:08:26] tokenization_utils_base.py:2034 >> loading file tokenizer.model from cache at None
84
+
85
+ [INFO|2025-07-09 20:08:26] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/tokenizer.json
86
+
87
+ [INFO|2025-07-09 20:08:26] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at None
88
+
89
+ [INFO|2025-07-09 20:08:26] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at None
90
+
91
+ [INFO|2025-07-09 20:08:26] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/tokenizer_config.json
92
+
93
+ [INFO|2025-07-09 20:08:26] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
94
+
95
+ [INFO|2025-07-09 20:08:26] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
96
+
97
+ [INFO|2025-07-09 20:08:26] logging.py:157 >> Loading dataset Codes3_query_filtered_553474_mark_less_than_8.0.json...
98
+
99
+ [INFO|2025-07-09 20:09:10] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/config.json
100
+
101
+ [INFO|2025-07-09 20:09:10] configuration_utils.py:768 >> Model config LlamaConfig {
102
+ "_name_or_path": "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
103
+ "architectures": [
104
+ "LlamaForCausalLM"
105
+ ],
106
+ "attention_bias": false,
107
+ "attention_dropout": 0.0,
108
+ "bos_token_id": 100000,
109
+ "eos_token_id": 100015,
110
+ "head_dim": 128,
111
+ "hidden_act": "silu",
112
+ "hidden_size": 4096,
113
+ "initializer_range": 0.02,
114
+ "intermediate_size": 11008,
115
+ "max_position_embeddings": 4096,
116
+ "mlp_bias": false,
117
+ "model_type": "llama",
118
+ "num_attention_heads": 32,
119
+ "num_hidden_layers": 30,
120
+ "num_key_value_heads": 32,
121
+ "pretraining_tp": 1,
122
+ "rms_norm_eps": 1e-06,
123
+ "rope_scaling": null,
124
+ "rope_theta": 10000.0,
125
+ "tie_word_embeddings": false,
126
+ "torch_dtype": "bfloat16",
127
+ "transformers_version": "4.48.2",
128
+ "use_cache": true,
129
+ "vocab_size": 102400
130
+ }
131
+
132
+
133
+ [WARNING|2025-07-09 20:09:10] logging.py:162 >> Input length is smaller than max length. Consider increase input length.
134
+
135
+ [INFO|2025-07-09 20:09:10] logging.py:157 >> Using llama3 scaling strategy and setting scaling factor to 1.0.
136
+
137
+ [INFO|2025-07-09 20:09:10] logging.py:157 >> Using block diagonal attention for sequence packing without cross-attention.
138
+
139
+ [INFO|2025-07-09 20:09:11] logging.py:157 >> Liger kernel has been applied to the model.
140
+
141
+ [INFO|2025-07-09 20:09:11] modeling_utils.py:3904 >> loading weights file model.safetensors from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/model.safetensors.index.json
142
+
143
+ [INFO|2025-07-09 20:09:11] modeling_utils.py:1582 >> Instantiating LlamaForCausalLM model under default dtype torch.bfloat16.
144
+
145
+ [INFO|2025-07-09 20:09:11] configuration_utils.py:1140 >> Generate config GenerationConfig {
146
+ "bos_token_id": 100000,
147
+ "eos_token_id": 100015
148
+ }
149
+
150
+
151
+ [INFO|2025-07-09 20:09:14] modeling_utils.py:4888 >> All model checkpoint weights were used when initializing LlamaForCausalLM.
152
+
153
+
154
+ [INFO|2025-07-09 20:09:14] modeling_utils.py:4896 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at deepseek-ai/deepseek-coder-7b-instruct-v1.5.
155
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training.
156
+
157
+ [INFO|2025-07-09 20:09:14] configuration_utils.py:1095 >> loading configuration file generation_config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/generation_config.json
158
+
159
+ [INFO|2025-07-09 20:09:14] configuration_utils.py:1140 >> Generate config GenerationConfig {
160
+ "bos_token_id": 100000,
161
+ "eos_token_id": 100015
162
+ }
163
+
164
+
165
+ [INFO|2025-07-09 20:09:14] logging.py:157 >> Gradient checkpointing enabled.
166
+
167
+ [INFO|2025-07-09 20:09:14] logging.py:157 >> Using torch SDPA for faster training and inference.
168
+
169
+ [INFO|2025-07-09 20:09:14] logging.py:157 >> Upcasting trainable params to float32.
170
+
171
+ [INFO|2025-07-09 20:09:14] logging.py:157 >> Fine-tuning method: Freeze
172
+
173
+ [INFO|2025-07-09 20:09:14] logging.py:157 >> Set trainable layers: .14.,.29.
174
+
175
+ [INFO|2025-07-09 20:09:14] logging.py:157 >> trainable params: 404,766,720 || all params: 6,910,365,696 || trainable%: 5.8574
176
+
177
+ [INFO|2025-07-09 20:09:14] trainer.py:741 >> Using auto half precision backend
178
+
179
+ [INFO|2025-07-09 20:09:14] logging.py:157 >> Found linear modules: up_proj,k_proj,gate_proj,down_proj,o_proj,q_proj,v_proj
180
+
181
+ [INFO|2025-07-09 20:09:14] logging.py:157 >> Using APOLLO optimizer with args: {'rank': 256, 'proj': 'random', 'proj_type': 'std', 'update_proj_gap': 200, 'scale': 1, 'scale_type': 'channel', 'scale_front': False}.
182
+
183
+ [INFO|2025-07-09 20:09:15] trainer.py:2369 >> ***** Running training *****
184
+
185
+ [INFO|2025-07-09 20:09:15] trainer.py:2370 >> Num examples = 32,858
186
+
187
+ [INFO|2025-07-09 20:09:15] trainer.py:2371 >> Num Epochs = 1
188
+
189
+ [INFO|2025-07-09 20:09:15] trainer.py:2372 >> Instantaneous batch size per device = 16
190
+
191
+ [INFO|2025-07-09 20:09:15] trainer.py:2375 >> Total train batch size (w. parallel, distributed & accumulation) = 384
192
+
193
+ [INFO|2025-07-09 20:09:15] trainer.py:2376 >> Gradient Accumulation steps = 8
194
+
195
+ [INFO|2025-07-09 20:09:15] trainer.py:2377 >> Total optimization steps = 85
196
+
197
+ [INFO|2025-07-09 20:09:15] trainer.py:2378 >> Number of trainable parameters = 404,766,720
198
+
199
+ [INFO|2025-07-09 20:11:56] logging.py:157 >> {'loss': 1.2528, 'learning_rate': 4.9983e-05, 'epoch': 0.01, 'throughput': 9835.11}
200
+
201
+ [INFO|2025-07-09 20:14:29] logging.py:157 >> {'loss': 1.1456, 'learning_rate': 4.9932e-05, 'epoch': 0.02, 'throughput': 10039.91}
202
+
203
+ [INFO|2025-07-09 20:17:02] logging.py:157 >> {'loss': 1.0528, 'learning_rate': 4.9846e-05, 'epoch': 0.04, 'throughput': 10116.78}
204
+
205
+ [INFO|2025-07-09 20:19:35] logging.py:157 >> {'loss': 0.9542, 'learning_rate': 4.9727e-05, 'epoch': 0.05, 'throughput': 10154.68}
206
+
207
+ [INFO|2025-07-09 20:22:08] logging.py:157 >> {'loss': 0.8888, 'learning_rate': 4.9574e-05, 'epoch': 0.06, 'throughput': 10175.92}
208
+
209
+ [INFO|2025-07-09 20:24:43] logging.py:157 >> {'loss': 0.8125, 'learning_rate': 4.9388e-05, 'epoch': 0.07, 'throughput': 10177.83}
210
+
211
+ [INFO|2025-07-09 20:27:16] logging.py:157 >> {'loss': 0.7639, 'learning_rate': 4.9168e-05, 'epoch': 0.08, 'throughput': 10187.10}
212
+
213
+ [INFO|2025-07-09 20:29:49] logging.py:157 >> {'loss': 0.7068, 'learning_rate': 4.8915e-05, 'epoch': 0.09, 'throughput': 10197.99}
214
+
215
+ [INFO|2025-07-09 20:32:23] logging.py:157 >> {'loss': 0.6852, 'learning_rate': 4.8630e-05, 'epoch': 0.11, 'throughput': 10205.83}
216
+
217
+ [INFO|2025-07-09 20:34:56] logging.py:157 >> {'loss': 0.6571, 'learning_rate': 4.8312e-05, 'epoch': 0.12, 'throughput': 10211.26}
218
+
219
+ [INFO|2025-07-09 20:37:29] logging.py:157 >> {'loss': 0.6347, 'learning_rate': 4.7962e-05, 'epoch': 0.13, 'throughput': 10216.60}
220
+
221
+ [INFO|2025-07-09 20:40:02] logging.py:157 >> {'loss': 0.6191, 'learning_rate': 4.7581e-05, 'epoch': 0.14, 'throughput': 10220.74}
222
+
223
+ [INFO|2025-07-09 20:42:36] logging.py:157 >> {'loss': 0.5761, 'learning_rate': 4.7169e-05, 'epoch': 0.15, 'throughput': 10224.20}
224
+
225
+ [INFO|2025-07-09 20:45:09] logging.py:157 >> {'loss': 0.5772, 'learning_rate': 4.6727e-05, 'epoch': 0.16, 'throughput': 10227.13}
226
+
227
+ [INFO|2025-07-09 20:47:42] logging.py:157 >> {'loss': 0.5579, 'learning_rate': 4.6255e-05, 'epoch': 0.18, 'throughput': 10229.70}
228
+
229
+ [INFO|2025-07-09 20:50:15] logging.py:157 >> {'loss': 0.5674, 'learning_rate': 4.5755e-05, 'epoch': 0.19, 'throughput': 10233.46}
230
+
231
+ [INFO|2025-07-09 20:52:48] logging.py:157 >> {'loss': 0.5767, 'learning_rate': 4.5225e-05, 'epoch': 0.20, 'throughput': 10235.03}
232
+
233
+ [INFO|2025-07-09 20:55:21] logging.py:157 >> {'loss': 0.5559, 'learning_rate': 4.4669e-05, 'epoch': 0.21, 'throughput': 10236.83}
234
+
235
+ [INFO|2025-07-09 20:57:55] logging.py:157 >> {'loss': 0.5603, 'learning_rate': 4.4085e-05, 'epoch': 0.22, 'throughput': 10238.16}
236
+
237
+ [INFO|2025-07-09 21:00:28] logging.py:157 >> {'loss': 0.5541, 'learning_rate': 4.3475e-05, 'epoch': 0.23, 'throughput': 10239.41}
238
+
239
+ [INFO|2025-07-09 21:03:01] logging.py:157 >> {'loss': 0.5358, 'learning_rate': 4.2840e-05, 'epoch': 0.25, 'throughput': 10240.84}
240
+
241
+ [INFO|2025-07-09 21:05:34] logging.py:157 >> {'loss': 0.5290, 'learning_rate': 4.2181e-05, 'epoch': 0.26, 'throughput': 10242.63}
242
+
243
+ [INFO|2025-07-09 21:08:07] logging.py:157 >> {'loss': 0.5391, 'learning_rate': 4.1498e-05, 'epoch': 0.27, 'throughput': 10243.79}
244
+
245
+ [INFO|2025-07-09 21:10:40] logging.py:157 >> {'loss': 0.5368, 'learning_rate': 4.0793e-05, 'epoch': 0.28, 'throughput': 10244.74}
246
+
247
+ [INFO|2025-07-09 21:13:14] logging.py:157 >> {'loss': 0.5226, 'learning_rate': 4.0066e-05, 'epoch': 0.29, 'throughput': 10245.36}
248
+
249
+ [INFO|2025-07-09 21:15:47] logging.py:157 >> {'loss': 0.5181, 'learning_rate': 3.9318e-05, 'epoch': 0.30, 'throughput': 10245.84}
250
+
251
+ [INFO|2025-07-09 21:18:20] logging.py:157 >> {'loss': 0.5368, 'learning_rate': 3.8551e-05, 'epoch': 0.32, 'throughput': 10246.61}
252
+
253
+ [INFO|2025-07-09 21:20:53] logging.py:157 >> {'loss': 0.5143, 'learning_rate': 3.7766e-05, 'epoch': 0.33, 'throughput': 10247.05}
254
+
255
+ [INFO|2025-07-09 21:23:27] logging.py:157 >> {'loss': 0.5084, 'learning_rate': 3.6963e-05, 'epoch': 0.34, 'throughput': 10247.38}
256
+
257
+ [INFO|2025-07-09 21:26:00] logging.py:157 >> {'loss': 0.5026, 'learning_rate': 3.6143e-05, 'epoch': 0.35, 'throughput': 10247.73}
258
+
259
+ [INFO|2025-07-09 21:28:33] logging.py:157 >> {'loss': 0.5300, 'learning_rate': 3.5309e-05, 'epoch': 0.36, 'throughput': 10248.10}
260
+
261
+ [INFO|2025-07-09 21:31:07] logging.py:157 >> {'loss': 0.5320, 'learning_rate': 3.4460e-05, 'epoch': 0.37, 'throughput': 10248.71}
262
+
263
+ [INFO|2025-07-09 21:33:40] logging.py:157 >> {'loss': 0.5257, 'learning_rate': 3.3599e-05, 'epoch': 0.39, 'throughput': 10248.92}
264
+
265
+ [INFO|2025-07-09 21:36:13] logging.py:157 >> {'loss': 0.5078, 'learning_rate': 3.2725e-05, 'epoch': 0.40, 'throughput': 10249.40}
266
+
267
+ [INFO|2025-07-09 21:38:46] logging.py:157 >> {'loss': 0.5012, 'learning_rate': 3.1842e-05, 'epoch': 0.41, 'throughput': 10249.82}
268
+
269
+ [INFO|2025-07-09 21:41:20] logging.py:157 >> {'loss': 0.5117, 'learning_rate': 3.0948e-05, 'epoch': 0.42, 'throughput': 10250.03}
270
+
271
+ [INFO|2025-07-09 21:43:53] logging.py:157 >> {'loss': 0.5160, 'learning_rate': 3.0047e-05, 'epoch': 0.43, 'throughput': 10250.39}
272
+
273
+ [INFO|2025-07-09 21:46:26] logging.py:157 >> {'loss': 0.5189, 'learning_rate': 2.9139e-05, 'epoch': 0.44, 'throughput': 10250.64}
274
+
275
+ [INFO|2025-07-09 21:49:00] logging.py:157 >> {'loss': 0.4973, 'learning_rate': 2.8225e-05, 'epoch': 0.46, 'throughput': 10251.16}
276
+
277
+ [INFO|2025-07-09 21:51:33] logging.py:157 >> {'loss': 0.4942, 'learning_rate': 2.7307e-05, 'epoch': 0.47, 'throughput': 10251.77}
278
+
279
+ [INFO|2025-07-09 21:54:06] logging.py:157 >> {'loss': 0.5069, 'learning_rate': 2.6385e-05, 'epoch': 0.48, 'throughput': 10252.24}
280
+
281
+ [INFO|2025-07-09 21:56:39] logging.py:157 >> {'loss': 0.5218, 'learning_rate': 2.5462e-05, 'epoch': 0.49, 'throughput': 10252.43}
282
+
283
+ [INFO|2025-07-09 21:59:12] logging.py:157 >> {'loss': 0.5003, 'learning_rate': 2.4538e-05, 'epoch': 0.50, 'throughput': 10252.63}
284
+
285
+ [INFO|2025-07-09 22:01:45] logging.py:157 >> {'loss': 0.4997, 'learning_rate': 2.3615e-05, 'epoch': 0.51, 'throughput': 10253.02}
286
+
287
+ [INFO|2025-07-09 22:04:19] logging.py:157 >> {'loss': 0.5045, 'learning_rate': 2.2693e-05, 'epoch': 0.53, 'throughput': 10253.25}
288
+
289
+ [INFO|2025-07-09 22:06:52] logging.py:157 >> {'loss': 0.4972, 'learning_rate': 2.1775e-05, 'epoch': 0.54, 'throughput': 10253.46}
290
+
291
+ [INFO|2025-07-09 22:09:25] logging.py:157 >> {'loss': 0.5174, 'learning_rate': 2.0861e-05, 'epoch': 0.55, 'throughput': 10253.76}
292
+
293
+ [INFO|2025-07-09 22:11:58] logging.py:157 >> {'loss': 0.5086, 'learning_rate': 1.9953e-05, 'epoch': 0.56, 'throughput': 10254.17}
294
+
295
+ [INFO|2025-07-09 22:14:32] logging.py:157 >> {'loss': 0.4988, 'learning_rate': 1.9052e-05, 'epoch': 0.57, 'throughput': 10254.33}
296
+
297
+ [INFO|2025-07-09 22:17:05] logging.py:157 >> {'loss': 0.5047, 'learning_rate': 1.8158e-05, 'epoch': 0.58, 'throughput': 10254.36}
298
+
299
+ [INFO|2025-07-09 22:19:38] logging.py:157 >> {'loss': 0.4977, 'learning_rate': 1.7275e-05, 'epoch': 0.60, 'throughput': 10254.39}
300
+
301
+ [INFO|2025-07-09 22:22:11] logging.py:157 >> {'loss': 0.4775, 'learning_rate': 1.6401e-05, 'epoch': 0.61, 'throughput': 10254.65}
302
+
303
+ [INFO|2025-07-09 22:24:45] logging.py:157 >> {'loss': 0.5190, 'learning_rate': 1.5540e-05, 'epoch': 0.62, 'throughput': 10254.75}
304
+
305
+ [INFO|2025-07-09 22:27:18] logging.py:157 >> {'loss': 0.5102, 'learning_rate': 1.4691e-05, 'epoch': 0.63, 'throughput': 10254.76}
306
+
307
+ [INFO|2025-07-09 22:29:51] logging.py:157 >> {'loss': 0.4705, 'learning_rate': 1.3857e-05, 'epoch': 0.64, 'throughput': 10254.79}
308
+
309
+ [INFO|2025-07-09 22:32:25] logging.py:157 >> {'loss': 0.4965, 'learning_rate': 1.3037e-05, 'epoch': 0.65, 'throughput': 10254.68}
310
+
311
+ [INFO|2025-07-09 22:34:58] logging.py:157 >> {'loss': 0.5030, 'learning_rate': 1.2234e-05, 'epoch': 0.67, 'throughput': 10254.63}
312
+
313
+ [INFO|2025-07-09 22:37:32] logging.py:157 >> {'loss': 0.4921, 'learning_rate': 1.1449e-05, 'epoch': 0.68, 'throughput': 10254.63}
314
+
315
+ [INFO|2025-07-09 22:40:05] logging.py:157 >> {'loss': 0.5042, 'learning_rate': 1.0682e-05, 'epoch': 0.69, 'throughput': 10254.57}
316
+
317
+ [INFO|2025-07-09 22:42:38] logging.py:157 >> {'loss': 0.5145, 'learning_rate': 9.9341e-06, 'epoch': 0.70, 'throughput': 10254.68}
318
+
319
+ [INFO|2025-07-09 22:45:12] logging.py:157 >> {'loss': 0.4897, 'learning_rate': 9.2072e-06, 'epoch': 0.71, 'throughput': 10254.77}
320
+
321
+ [INFO|2025-07-09 22:47:45] logging.py:157 >> {'loss': 0.5033, 'learning_rate': 8.5019e-06, 'epoch': 0.72, 'throughput': 10254.85}
322
+
323
+ [INFO|2025-07-09 22:50:18] logging.py:157 >> {'loss': 0.4730, 'learning_rate': 7.8191e-06, 'epoch': 0.74, 'throughput': 10254.95}
324
+
325
+ [INFO|2025-07-09 22:52:52] logging.py:157 >> {'loss': 0.5298, 'learning_rate': 7.1597e-06, 'epoch': 0.75, 'throughput': 10255.10}
326
+
327
+ [INFO|2025-07-09 22:55:25] logging.py:157 >> {'loss': 0.4685, 'learning_rate': 6.5248e-06, 'epoch': 0.76, 'throughput': 10255.23}
328
+
329
+ [INFO|2025-07-09 22:57:58] logging.py:157 >> {'loss': 0.4931, 'learning_rate': 5.9150e-06, 'epoch': 0.77, 'throughput': 10255.33}
330
+
331
+ [INFO|2025-07-09 23:00:31] logging.py:157 >> {'loss': 0.4957, 'learning_rate': 5.3314e-06, 'epoch': 0.78, 'throughput': 10255.52}
332
+
333
+ [INFO|2025-07-09 23:03:04] logging.py:157 >> {'loss': 0.4924, 'learning_rate': 4.7746e-06, 'epoch': 0.79, 'throughput': 10255.76}
334
+
335
+ [INFO|2025-07-09 23:05:38] logging.py:157 >> {'loss': 0.5041, 'learning_rate': 4.2454e-06, 'epoch': 0.81, 'throughput': 10255.93}
336
+
337
+ [INFO|2025-07-09 23:08:11] logging.py:157 >> {'loss': 0.4948, 'learning_rate': 3.7446e-06, 'epoch': 0.82, 'throughput': 10256.07}
338
+
339
+ [INFO|2025-07-09 23:10:44] logging.py:157 >> {'loss': 0.5085, 'learning_rate': 3.2728e-06, 'epoch': 0.83, 'throughput': 10256.08}
340
+
341
+ [INFO|2025-07-09 23:13:17] logging.py:157 >> {'loss': 0.5152, 'learning_rate': 2.8307e-06, 'epoch': 0.84, 'throughput': 10256.66}
342
+
343
+ [INFO|2025-07-09 23:15:50] logging.py:157 >> {'loss': 0.4905, 'learning_rate': 2.4188e-06, 'epoch': 0.85, 'throughput': 10256.64}
344
+
345
+ [INFO|2025-07-09 23:18:24] logging.py:157 >> {'loss': 0.5023, 'learning_rate': 2.0378e-06, 'epoch': 0.86, 'throughput': 10256.67}
346
+
347
+ [INFO|2025-07-09 23:20:57] logging.py:157 >> {'loss': 0.4993, 'learning_rate': 1.6882e-06, 'epoch': 0.88, 'throughput': 10256.80}
348
+
349
+ [INFO|2025-07-09 23:23:30] logging.py:157 >> {'loss': 0.4810, 'learning_rate': 1.3704e-06, 'epoch': 0.89, 'throughput': 10256.78}
350
+
351
+ [INFO|2025-07-09 23:26:04] logging.py:157 >> {'loss': 0.4806, 'learning_rate': 1.0849e-06, 'epoch': 0.90, 'throughput': 10256.76}
352
+
353
+ [INFO|2025-07-09 23:28:37] logging.py:157 >> {'loss': 0.4915, 'learning_rate': 8.3204e-07, 'epoch': 0.91, 'throughput': 10256.95}
354
+
355
+ [INFO|2025-07-09 23:31:10] logging.py:157 >> {'loss': 0.4937, 'learning_rate': 6.1220e-07, 'epoch': 0.92, 'throughput': 10256.91}
356
+
357
+ [INFO|2025-07-09 23:33:43] logging.py:157 >> {'loss': 0.5152, 'learning_rate': 4.2567e-07, 'epoch': 0.93, 'throughput': 10256.86}
358
+
359
+ [INFO|2025-07-09 23:36:17] logging.py:157 >> {'loss': 0.4832, 'learning_rate': 2.7271e-07, 'epoch': 0.95, 'throughput': 10257.04}
360
+
361
+ [INFO|2025-07-09 23:38:50] logging.py:157 >> {'loss': 0.4975, 'learning_rate': 1.5352e-07, 'epoch': 0.96, 'throughput': 10257.12}
362
+
363
+ [INFO|2025-07-09 23:41:23] logging.py:157 >> {'loss': 0.4887, 'learning_rate': 6.8271e-08, 'epoch': 0.97, 'throughput': 10257.16}
364
+
365
+ [INFO|2025-07-09 23:43:56] logging.py:157 >> {'loss': 0.4905, 'learning_rate': 1.7073e-08, 'epoch': 0.98, 'throughput': 10257.17}
366
+
367
+ [INFO|2025-07-09 23:46:30] logging.py:157 >> {'loss': 0.5088, 'learning_rate': 0.0000e+00, 'epoch': 0.99, 'throughput': 10257.11}
368
+
369
+ [INFO|2025-07-09 23:46:30] trainer.py:3910 >> Saving model checkpoint to saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nlx/checkpoint-85
370
+
371
+ [INFO|2025-07-09 23:46:30] configuration_utils.py:420 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nlx/checkpoint-85/config.json
372
+
373
+ [INFO|2025-07-09 23:46:30] configuration_utils.py:909 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nlx/checkpoint-85/generation_config.json
374
+
375
+ [INFO|2025-07-09 23:46:51] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 3 checkpoint shards. You can find where each parameters has been saved in the index located at saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nlx/checkpoint-85/model.safetensors.index.json.
376
+
377
+ [INFO|2025-07-09 23:46:51] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nlx/checkpoint-85/tokenizer_config.json
378
+
379
+ [INFO|2025-07-09 23:46:51] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nlx/checkpoint-85/special_tokens_map.json
380
+
381
+ [INFO|2025-07-09 23:46:52] trainer.py:2643 >>
382
+
383
+ Training completed. Do not forget to share your model on huggingface.co/models =)
384
+
385
+
386
+
387
+ [INFO|2025-07-09 23:46:52] trainer.py:3910 >> Saving model checkpoint to saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nlx
388
+
389
+ [INFO|2025-07-09 23:46:52] configuration_utils.py:420 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nlx/config.json
390
+
391
+ [INFO|2025-07-09 23:46:52] configuration_utils.py:909 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nlx/generation_config.json
392
+
393
+ [INFO|2025-07-09 23:47:16] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 3 checkpoint shards. You can find where each parameters has been saved in the index located at saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nlx/model.safetensors.index.json.
394
+
395
+ [INFO|2025-07-09 23:47:16] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nlx/tokenizer_config.json
396
+
397
+ [INFO|2025-07-09 23:47:16] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nlx/special_tokens_map.json
398
+
399
+ [WARNING|2025-07-09 23:47:16] logging.py:162 >> No metric eval_loss to plot.
400
+
401
+ [WARNING|2025-07-09 23:47:16] logging.py:162 >> No metric eval_accuracy to plot.
402
+
403
+ [INFO|2025-07-09 23:47:16] modelcard.py:449 >> Dropping the following result as it does not have all the necessary fields:
404
+ {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
405
+
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|EOT|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end▁of▁sentence|>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "100000": {
7
+ "content": "<|begin▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "100001": {
15
+ "content": "<|end▁of▁sentence|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "100002": {
23
+ "content": "ø",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "100003": {
31
+ "content": "ö",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "100004": {
39
+ "content": "ú",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "100005": {
47
+ "content": "ÿ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "100006": {
55
+ "content": "õ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "100007": {
63
+ "content": "÷",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "100008": {
71
+ "content": "û",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "100009": {
79
+ "content": "ý",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "100010": {
87
+ "content": "À",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "100011": {
95
+ "content": "ù",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "100012": {
103
+ "content": "Á",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "100013": {
111
+ "content": "þ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "100014": {
119
+ "content": "ü",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "100015": {
127
+ "content": "<|EOT|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": true
133
+ }
134
+ },
135
+ "bos_token": "<|begin▁of▁sentence|>",
136
+ "chat_template": "{% if not add_generation_prompt is defined %}\n{% set add_generation_prompt = false %}\n{% endif %}\n{%- set ns = namespace(found=false) -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set ns.found = true -%}\n {%- endif -%}\n{%- endfor -%}\n{{bos_token}}{%- if not ns.found -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{% if add_generation_prompt %}\n{{'### Response:'}}\n{% endif %}",
137
+ "clean_up_tokenization_spaces": false,
138
+ "eos_token": "<|EOT|>",
139
+ "extra_special_tokens": {},
140
+ "legacy": true,
141
+ "model_max_length": 4096,
142
+ "pad_token": "<|end▁of▁sentence|>",
143
+ "padding_side": "right",
144
+ "sp_model_kwargs": {},
145
+ "split_special_tokens": false,
146
+ "tokenizer_class": "LlamaTokenizer",
147
+ "unk_token": null,
148
+ "use_default_system_prompt": false
149
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9927007299270073,
3
+ "num_input_tokens_seen": 133693440,
4
+ "total_flos": 5.206772811237949e+18,
5
+ "train_loss": 0.5589800634804893,
6
+ "train_runtime": 13057.0702,
7
+ "train_samples_per_second": 2.516,
8
+ "train_steps_per_second": 0.007
9
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 85, "loss": 1.2528, "lr": 4.998292650357558e-05, "epoch": 0.01167883211678832, "percentage": 1.18, "elapsed_time": "0:02:39", "remaining_time": "3:43:53", "throughput": 9835.11, "total_tokens": 1572864}
2
+ {"current_steps": 2, "total_steps": 85, "loss": 1.1456, "lr": 4.993172933464471e-05, "epoch": 0.02335766423357664, "percentage": 2.35, "elapsed_time": "0:05:13", "remaining_time": "3:36:42", "throughput": 10039.91, "total_tokens": 3145728}
3
+ {"current_steps": 3, "total_steps": 85, "loss": 1.0528, "lr": 4.984647842238185e-05, "epoch": 0.035036496350364967, "percentage": 3.53, "elapsed_time": "0:07:46", "remaining_time": "3:32:28", "throughput": 10116.78, "total_tokens": 4718592}
4
+ {"current_steps": 4, "total_steps": 85, "loss": 0.9542, "lr": 4.972729020927865e-05, "epoch": 0.04671532846715328, "percentage": 4.71, "elapsed_time": "0:10:19", "remaining_time": "3:29:06", "throughput": 10154.68, "total_tokens": 6291456}
5
+ {"current_steps": 5, "total_steps": 85, "loss": 0.8888, "lr": 4.957432749209755e-05, "epoch": 0.058394160583941604, "percentage": 5.88, "elapsed_time": "0:12:52", "remaining_time": "3:26:05", "throughput": 10175.92, "total_tokens": 7864320}
6
+ {"current_steps": 6, "total_steps": 85, "loss": 0.8125, "lr": 4.938779919951092e-05, "epoch": 0.07007299270072993, "percentage": 7.06, "elapsed_time": "0:15:27", "remaining_time": "3:23:28", "throughput": 10177.83, "total_tokens": 9437184}
7
+ {"current_steps": 7, "total_steps": 85, "loss": 0.7639, "lr": 4.916796010672969e-05, "epoch": 0.08175182481751825, "percentage": 8.24, "elapsed_time": "0:18:00", "remaining_time": "3:20:43", "throughput": 10187.1, "total_tokens": 11010048}
8
+ {"current_steps": 8, "total_steps": 85, "loss": 0.7068, "lr": 4.891511048751102e-05, "epoch": 0.09343065693430656, "percentage": 9.41, "elapsed_time": "0:20:33", "remaining_time": "3:17:55", "throughput": 10197.99, "total_tokens": 12582912}
9
+ {"current_steps": 9, "total_steps": 85, "loss": 0.6852, "lr": 4.862959570402049e-05, "epoch": 0.10510948905109489, "percentage": 10.59, "elapsed_time": "0:23:07", "remaining_time": "3:15:12", "throughput": 10205.83, "total_tokens": 14155776}
10
+ {"current_steps": 10, "total_steps": 85, "loss": 0.6571, "lr": 4.8311805735108894e-05, "epoch": 0.11678832116788321, "percentage": 11.76, "elapsed_time": "0:25:40", "remaining_time": "3:12:32", "throughput": 10211.26, "total_tokens": 15728640}
11
+ {"current_steps": 11, "total_steps": 85, "loss": 0.6347, "lr": 4.796217464364808e-05, "epoch": 0.12846715328467154, "percentage": 12.94, "elapsed_time": "0:28:13", "remaining_time": "3:09:52", "throughput": 10216.6, "total_tokens": 17301504}
12
+ {"current_steps": 12, "total_steps": 85, "loss": 0.6191, "lr": 4.758117998365322e-05, "epoch": 0.14014598540145987, "percentage": 14.12, "elapsed_time": "0:30:46", "remaining_time": "3:07:13", "throughput": 10220.74, "total_tokens": 18874368}
13
+ {"current_steps": 13, "total_steps": 85, "loss": 0.5761, "lr": 4.716934214800155e-05, "epoch": 0.15182481751824817, "percentage": 15.29, "elapsed_time": "0:33:19", "remaining_time": "3:04:36", "throughput": 10224.2, "total_tokens": 20447232}
14
+ {"current_steps": 14, "total_steps": 85, "loss": 0.5772, "lr": 4.672722365763821e-05, "epoch": 0.1635036496350365, "percentage": 16.47, "elapsed_time": "0:35:53", "remaining_time": "3:01:59", "throughput": 10227.13, "total_tokens": 22020096}
15
+ {"current_steps": 15, "total_steps": 85, "loss": 0.5579, "lr": 4.625542839324036e-05, "epoch": 0.17518248175182483, "percentage": 17.65, "elapsed_time": "0:38:26", "remaining_time": "2:59:22", "throughput": 10229.7, "total_tokens": 23592960}
16
+ {"current_steps": 16, "total_steps": 85, "loss": 0.5674, "lr": 4.575460077038877e-05, "epoch": 0.18686131386861313, "percentage": 18.82, "elapsed_time": "0:40:59", "remaining_time": "2:56:45", "throughput": 10233.46, "total_tokens": 25165824}
17
+ {"current_steps": 17, "total_steps": 85, "loss": 0.5767, "lr": 4.522542485937369e-05, "epoch": 0.19854014598540146, "percentage": 20.0, "elapsed_time": "0:43:32", "remaining_time": "2:54:09", "throughput": 10235.03, "total_tokens": 26738688}
18
+ {"current_steps": 18, "total_steps": 85, "loss": 0.5559, "lr": 4.4668623450837085e-05, "epoch": 0.21021897810218979, "percentage": 21.18, "elapsed_time": "0:46:05", "remaining_time": "2:51:34", "throughput": 10236.83, "total_tokens": 28311552}
19
+ {"current_steps": 19, "total_steps": 85, "loss": 0.5603, "lr": 4.408495706852758e-05, "epoch": 0.22189781021897811, "percentage": 22.35, "elapsed_time": "0:48:38", "remaining_time": "2:48:59", "throughput": 10238.16, "total_tokens": 29884416}
20
+ {"current_steps": 20, "total_steps": 85, "loss": 0.5541, "lr": 4.347522293051648e-05, "epoch": 0.23357664233576642, "percentage": 23.53, "elapsed_time": "0:51:12", "remaining_time": "2:46:24", "throughput": 10239.41, "total_tokens": 31457280}
21
+ {"current_steps": 21, "total_steps": 85, "loss": 0.5358, "lr": 4.284025386029381e-05, "epoch": 0.24525547445255474, "percentage": 24.71, "elapsed_time": "0:53:45", "remaining_time": "2:43:49", "throughput": 10240.84, "total_tokens": 33030144}
22
+ {"current_steps": 22, "total_steps": 85, "loss": 0.529, "lr": 4.218091714923157e-05, "epoch": 0.2569343065693431, "percentage": 25.88, "elapsed_time": "0:56:18", "remaining_time": "2:41:14", "throughput": 10242.63, "total_tokens": 34603008}
23
+ {"current_steps": 23, "total_steps": 85, "loss": 0.5391, "lr": 4.149811337196807e-05, "epoch": 0.2686131386861314, "percentage": 27.06, "elapsed_time": "0:58:51", "remaining_time": "2:38:39", "throughput": 10243.79, "total_tokens": 36175872}
24
+ {"current_steps": 24, "total_steps": 85, "loss": 0.5368, "lr": 4.079277515633127e-05, "epoch": 0.28029197080291973, "percentage": 28.24, "elapsed_time": "1:01:24", "remaining_time": "2:36:05", "throughput": 10244.74, "total_tokens": 37748736}
25
+ {"current_steps": 25, "total_steps": 85, "loss": 0.5226, "lr": 4.0065865909481417e-05, "epoch": 0.291970802919708, "percentage": 29.41, "elapsed_time": "1:03:57", "remaining_time": "2:33:31", "throughput": 10245.36, "total_tokens": 39321600}
26
+ {"current_steps": 26, "total_steps": 85, "loss": 0.5181, "lr": 3.931837850201263e-05, "epoch": 0.30364963503649633, "percentage": 30.59, "elapsed_time": "1:06:31", "remaining_time": "2:30:57", "throughput": 10245.84, "total_tokens": 40894464}
27
+ {"current_steps": 27, "total_steps": 85, "loss": 0.5368, "lr": 3.855133391181124e-05, "epoch": 0.31532846715328466, "percentage": 31.76, "elapsed_time": "1:09:04", "remaining_time": "2:28:23", "throughput": 10246.61, "total_tokens": 42467328}
28
+ {"current_steps": 28, "total_steps": 85, "loss": 0.5143, "lr": 3.7765779829522675e-05, "epoch": 0.327007299270073, "percentage": 32.94, "elapsed_time": "1:11:37", "remaining_time": "2:25:49", "throughput": 10247.05, "total_tokens": 44040192}
29
+ {"current_steps": 29, "total_steps": 85, "loss": 0.5084, "lr": 3.696278922753216e-05, "epoch": 0.3386861313868613, "percentage": 34.12, "elapsed_time": "1:14:11", "remaining_time": "2:23:15", "throughput": 10247.38, "total_tokens": 45613056}
30
+ {"current_steps": 30, "total_steps": 85, "loss": 0.5026, "lr": 3.6143458894413465e-05, "epoch": 0.35036496350364965, "percentage": 35.29, "elapsed_time": "1:16:44", "remaining_time": "2:20:41", "throughput": 10247.73, "total_tokens": 47185920}
31
+ {"current_steps": 31, "total_steps": 85, "loss": 0.53, "lr": 3.5308907936847594e-05, "epoch": 0.362043795620438, "percentage": 36.47, "elapsed_time": "1:19:17", "remaining_time": "2:18:07", "throughput": 10248.1, "total_tokens": 48758784}
32
+ {"current_steps": 32, "total_steps": 85, "loss": 0.532, "lr": 3.446027625105776e-05, "epoch": 0.37372262773722625, "percentage": 37.65, "elapsed_time": "1:21:51", "remaining_time": "2:15:33", "throughput": 10248.71, "total_tokens": 50331648}
33
+ {"current_steps": 33, "total_steps": 85, "loss": 0.5257, "lr": 3.3598722965848204e-05, "epoch": 0.3854014598540146, "percentage": 38.82, "elapsed_time": "1:24:24", "remaining_time": "2:13:00", "throughput": 10248.92, "total_tokens": 51904512}
34
+ {"current_steps": 34, "total_steps": 85, "loss": 0.5078, "lr": 3.272542485937369e-05, "epoch": 0.3970802919708029, "percentage": 40.0, "elapsed_time": "1:26:57", "remaining_time": "2:10:26", "throughput": 10249.4, "total_tokens": 53477376}
35
+ {"current_steps": 35, "total_steps": 85, "loss": 0.5012, "lr": 3.1841574751802076e-05, "epoch": 0.40875912408759124, "percentage": 41.18, "elapsed_time": "1:29:30", "remaining_time": "2:07:52", "throughput": 10249.82, "total_tokens": 55050240}
36
+ {"current_steps": 36, "total_steps": 85, "loss": 0.5117, "lr": 3.094837987606547e-05, "epoch": 0.42043795620437957, "percentage": 42.35, "elapsed_time": "1:32:04", "remaining_time": "2:05:19", "throughput": 10250.03, "total_tokens": 56623104}
37
+ {"current_steps": 37, "total_steps": 85, "loss": 0.516, "lr": 3.0047060228925256e-05, "epoch": 0.4321167883211679, "percentage": 43.53, "elapsed_time": "1:34:37", "remaining_time": "2:02:45", "throughput": 10250.39, "total_tokens": 58195968}
38
+ {"current_steps": 38, "total_steps": 85, "loss": 0.5189, "lr": 2.913884690460325e-05, "epoch": 0.44379562043795623, "percentage": 44.71, "elapsed_time": "1:37:10", "remaining_time": "2:00:11", "throughput": 10250.64, "total_tokens": 59768832}
39
+ {"current_steps": 39, "total_steps": 85, "loss": 0.4973, "lr": 2.8224980413255086e-05, "epoch": 0.4554744525547445, "percentage": 45.88, "elapsed_time": "1:39:43", "remaining_time": "1:57:37", "throughput": 10251.16, "total_tokens": 61341696}
40
+ {"current_steps": 40, "total_steps": 85, "loss": 0.4942, "lr": 2.7306708986582553e-05, "epoch": 0.46715328467153283, "percentage": 47.06, "elapsed_time": "1:42:16", "remaining_time": "1:55:04", "throughput": 10251.77, "total_tokens": 62914560}
41
+ {"current_steps": 41, "total_steps": 85, "loss": 0.5069, "lr": 2.638528687289925e-05, "epoch": 0.47883211678832116, "percentage": 48.24, "elapsed_time": "1:44:50", "remaining_time": "1:52:30", "throughput": 10252.24, "total_tokens": 64487424}
42
+ {"current_steps": 42, "total_steps": 85, "loss": 0.5218, "lr": 2.5461972623978247e-05, "epoch": 0.4905109489051095, "percentage": 49.41, "elapsed_time": "1:47:23", "remaining_time": "1:49:56", "throughput": 10252.43, "total_tokens": 66060288}
43
+ {"current_steps": 43, "total_steps": 85, "loss": 0.5003, "lr": 2.453802737602176e-05, "epoch": 0.5021897810218978, "percentage": 50.59, "elapsed_time": "1:49:56", "remaining_time": "1:47:23", "throughput": 10252.63, "total_tokens": 67633152}
44
+ {"current_steps": 44, "total_steps": 85, "loss": 0.4997, "lr": 2.361471312710075e-05, "epoch": 0.5138686131386861, "percentage": 51.76, "elapsed_time": "1:52:29", "remaining_time": "1:44:49", "throughput": 10253.02, "total_tokens": 69206016}
45
+ {"current_steps": 45, "total_steps": 85, "loss": 0.5045, "lr": 2.2693291013417453e-05, "epoch": 0.5255474452554745, "percentage": 52.94, "elapsed_time": "1:55:03", "remaining_time": "1:42:16", "throughput": 10253.25, "total_tokens": 70778880}
46
+ {"current_steps": 46, "total_steps": 85, "loss": 0.4972, "lr": 2.1775019586744923e-05, "epoch": 0.5372262773722628, "percentage": 54.12, "elapsed_time": "1:57:36", "remaining_time": "1:39:42", "throughput": 10253.46, "total_tokens": 72351744}
47
+ {"current_steps": 47, "total_steps": 85, "loss": 0.5174, "lr": 2.0861153095396748e-05, "epoch": 0.5489051094890511, "percentage": 55.29, "elapsed_time": "2:00:09", "remaining_time": "1:37:08", "throughput": 10253.76, "total_tokens": 73924608}
48
+ {"current_steps": 48, "total_steps": 85, "loss": 0.5086, "lr": 1.995293977107475e-05, "epoch": 0.5605839416058395, "percentage": 56.47, "elapsed_time": "2:02:42", "remaining_time": "1:34:35", "throughput": 10254.17, "total_tokens": 75497472}
49
+ {"current_steps": 49, "total_steps": 85, "loss": 0.4988, "lr": 1.9051620123934537e-05, "epoch": 0.5722627737226277, "percentage": 57.65, "elapsed_time": "2:05:15", "remaining_time": "1:32:01", "throughput": 10254.33, "total_tokens": 77070336}
50
+ {"current_steps": 50, "total_steps": 85, "loss": 0.5047, "lr": 1.815842524819793e-05, "epoch": 0.583941605839416, "percentage": 58.82, "elapsed_time": "2:07:49", "remaining_time": "1:29:28", "throughput": 10254.36, "total_tokens": 78643200}
51
+ {"current_steps": 51, "total_steps": 85, "loss": 0.4977, "lr": 1.7274575140626318e-05, "epoch": 0.5956204379562043, "percentage": 60.0, "elapsed_time": "2:10:22", "remaining_time": "1:26:55", "throughput": 10254.39, "total_tokens": 80216064}
52
+ {"current_steps": 52, "total_steps": 85, "loss": 0.4775, "lr": 1.6401277034151798e-05, "epoch": 0.6072992700729927, "percentage": 61.18, "elapsed_time": "2:12:55", "remaining_time": "1:24:21", "throughput": 10254.65, "total_tokens": 81788928}
53
+ {"current_steps": 53, "total_steps": 85, "loss": 0.519, "lr": 1.5539723748942245e-05, "epoch": 0.618978102189781, "percentage": 62.35, "elapsed_time": "2:15:29", "remaining_time": "1:21:48", "throughput": 10254.75, "total_tokens": 83361792}
54
+ {"current_steps": 54, "total_steps": 85, "loss": 0.5102, "lr": 1.4691092063152417e-05, "epoch": 0.6306569343065693, "percentage": 63.53, "elapsed_time": "2:18:02", "remaining_time": "1:19:14", "throughput": 10254.76, "total_tokens": 84934656}
55
+ {"current_steps": 55, "total_steps": 85, "loss": 0.4705, "lr": 1.3856541105586545e-05, "epoch": 0.6423357664233577, "percentage": 64.71, "elapsed_time": "2:20:35", "remaining_time": "1:16:41", "throughput": 10254.79, "total_tokens": 86507520}
56
+ {"current_steps": 56, "total_steps": 85, "loss": 0.4965, "lr": 1.303721077246784e-05, "epoch": 0.654014598540146, "percentage": 65.88, "elapsed_time": "2:23:09", "remaining_time": "1:14:08", "throughput": 10254.68, "total_tokens": 88080384}
57
+ {"current_steps": 57, "total_steps": 85, "loss": 0.503, "lr": 1.223422017047733e-05, "epoch": 0.6656934306569343, "percentage": 67.06, "elapsed_time": "2:25:42", "remaining_time": "1:11:34", "throughput": 10254.63, "total_tokens": 89653248}
58
+ {"current_steps": 58, "total_steps": 85, "loss": 0.4921, "lr": 1.1448666088188764e-05, "epoch": 0.6773722627737226, "percentage": 68.24, "elapsed_time": "2:28:16", "remaining_time": "1:09:01", "throughput": 10254.63, "total_tokens": 91226112}
59
+ {"current_steps": 59, "total_steps": 85, "loss": 0.5042, "lr": 1.068162149798737e-05, "epoch": 0.689051094890511, "percentage": 69.41, "elapsed_time": "2:30:49", "remaining_time": "1:06:27", "throughput": 10254.57, "total_tokens": 92798976}
60
+ {"current_steps": 60, "total_steps": 85, "loss": 0.5145, "lr": 9.934134090518593e-06, "epoch": 0.7007299270072993, "percentage": 70.59, "elapsed_time": "2:33:22", "remaining_time": "1:03:54", "throughput": 10254.68, "total_tokens": 94371840}
61
+ {"current_steps": 61, "total_steps": 85, "loss": 0.4897, "lr": 9.207224843668732e-06, "epoch": 0.7124087591240876, "percentage": 71.76, "elapsed_time": "2:35:56", "remaining_time": "1:01:21", "throughput": 10254.77, "total_tokens": 95944704}
62
+ {"current_steps": 62, "total_steps": 85, "loss": 0.5033, "lr": 8.50188662803194e-06, "epoch": 0.724087591240876, "percentage": 72.94, "elapsed_time": "2:38:29", "remaining_time": "0:58:47", "throughput": 10254.85, "total_tokens": 97517568}
63
+ {"current_steps": 63, "total_steps": 85, "loss": 0.473, "lr": 7.819082850768434e-06, "epoch": 0.7357664233576642, "percentage": 74.12, "elapsed_time": "2:41:02", "remaining_time": "0:56:14", "throughput": 10254.95, "total_tokens": 99090432}
64
+ {"current_steps": 64, "total_steps": 85, "loss": 0.5298, "lr": 7.159746139706194e-06, "epoch": 0.7474452554744525, "percentage": 75.29, "elapsed_time": "2:43:35", "remaining_time": "0:53:40", "throughput": 10255.1, "total_tokens": 100663296}
65
+ {"current_steps": 65, "total_steps": 85, "loss": 0.4685, "lr": 6.524777069483526e-06, "epoch": 0.7591240875912408, "percentage": 76.47, "elapsed_time": "2:46:09", "remaining_time": "0:51:07", "throughput": 10255.23, "total_tokens": 102236160}
66
+ {"current_steps": 66, "total_steps": 85, "loss": 0.4931, "lr": 5.915042931472425e-06, "epoch": 0.7708029197080292, "percentage": 77.65, "elapsed_time": "2:48:42", "remaining_time": "0:48:34", "throughput": 10255.33, "total_tokens": 103809024}
67
+ {"current_steps": 67, "total_steps": 85, "loss": 0.4957, "lr": 5.33137654916292e-06, "epoch": 0.7824817518248175, "percentage": 78.82, "elapsed_time": "2:51:15", "remaining_time": "0:46:00", "throughput": 10255.52, "total_tokens": 105381888}
68
+ {"current_steps": 68, "total_steps": 85, "loss": 0.4924, "lr": 4.7745751406263165e-06, "epoch": 0.7941605839416058, "percentage": 80.0, "elapsed_time": "2:53:48", "remaining_time": "0:43:27", "throughput": 10255.76, "total_tokens": 106954752}
69
+ {"current_steps": 69, "total_steps": 85, "loss": 0.5041, "lr": 4.245399229611238e-06, "epoch": 0.8058394160583942, "percentage": 81.18, "elapsed_time": "2:56:21", "remaining_time": "0:40:53", "throughput": 10255.93, "total_tokens": 108527616}
70
+ {"current_steps": 70, "total_steps": 85, "loss": 0.4948, "lr": 3.7445716067596503e-06, "epoch": 0.8175182481751825, "percentage": 82.35, "elapsed_time": "2:58:55", "remaining_time": "0:38:20", "throughput": 10256.07, "total_tokens": 110100480}
71
+ {"current_steps": 71, "total_steps": 85, "loss": 0.5085, "lr": 3.2727763423617913e-06, "epoch": 0.8291970802919708, "percentage": 83.53, "elapsed_time": "3:01:28", "remaining_time": "0:35:47", "throughput": 10256.08, "total_tokens": 111673344}
72
+ {"current_steps": 72, "total_steps": 85, "loss": 0.5152, "lr": 2.8306578519984527e-06, "epoch": 0.8408759124087591, "percentage": 84.71, "elapsed_time": "3:04:01", "remaining_time": "0:33:13", "throughput": 10256.66, "total_tokens": 113246208}
73
+ {"current_steps": 73, "total_steps": 85, "loss": 0.4905, "lr": 2.418820016346779e-06, "epoch": 0.8525547445255475, "percentage": 85.88, "elapsed_time": "3:06:34", "remaining_time": "0:30:40", "throughput": 10256.64, "total_tokens": 114819072}
74
+ {"current_steps": 74, "total_steps": 85, "loss": 0.5023, "lr": 2.0378253563519247e-06, "epoch": 0.8642335766423358, "percentage": 87.06, "elapsed_time": "3:09:07", "remaining_time": "0:28:06", "throughput": 10256.67, "total_tokens": 116391936}
75
+ {"current_steps": 75, "total_steps": 85, "loss": 0.4993, "lr": 1.6881942648911076e-06, "epoch": 0.8759124087591241, "percentage": 88.24, "elapsed_time": "3:11:41", "remaining_time": "0:25:33", "throughput": 10256.8, "total_tokens": 117964800}
76
+ {"current_steps": 76, "total_steps": 85, "loss": 0.481, "lr": 1.3704042959795132e-06, "epoch": 0.8875912408759125, "percentage": 89.41, "elapsed_time": "3:14:14", "remaining_time": "0:23:00", "throughput": 10256.78, "total_tokens": 119537664}
77
+ {"current_steps": 77, "total_steps": 85, "loss": 0.4806, "lr": 1.0848895124889818e-06, "epoch": 0.8992700729927007, "percentage": 90.59, "elapsed_time": "3:16:47", "remaining_time": "0:20:26", "throughput": 10256.76, "total_tokens": 121110528}
78
+ {"current_steps": 78, "total_steps": 85, "loss": 0.4915, "lr": 8.320398932703144e-07, "epoch": 0.910948905109489, "percentage": 91.76, "elapsed_time": "3:19:20", "remaining_time": "0:17:53", "throughput": 10256.95, "total_tokens": 122683392}
79
+ {"current_steps": 79, "total_steps": 85, "loss": 0.4937, "lr": 6.122008004890851e-07, "epoch": 0.9226277372262773, "percentage": 92.94, "elapsed_time": "3:21:54", "remaining_time": "0:15:20", "throughput": 10256.91, "total_tokens": 124256256}
80
+ {"current_steps": 80, "total_steps": 85, "loss": 0.5152, "lr": 4.256725079024554e-07, "epoch": 0.9343065693430657, "percentage": 94.12, "elapsed_time": "3:24:27", "remaining_time": "0:12:46", "throughput": 10256.86, "total_tokens": 125829120}
81
+ {"current_steps": 81, "total_steps": 85, "loss": 0.4832, "lr": 2.7270979072135104e-07, "epoch": 0.945985401459854, "percentage": 95.29, "elapsed_time": "3:27:00", "remaining_time": "0:10:13", "throughput": 10257.04, "total_tokens": 127401984}
82
+ {"current_steps": 82, "total_steps": 85, "loss": 0.4975, "lr": 1.5352157761815977e-07, "epoch": 0.9576642335766423, "percentage": 96.47, "elapsed_time": "3:29:34", "remaining_time": "0:07:40", "throughput": 10257.12, "total_tokens": 128974848}
83
+ {"current_steps": 83, "total_steps": 85, "loss": 0.4887, "lr": 6.827066535529946e-08, "epoch": 0.9693430656934306, "percentage": 97.65, "elapsed_time": "3:32:07", "remaining_time": "0:05:06", "throughput": 10257.16, "total_tokens": 130547712}
84
+ {"current_steps": 84, "total_steps": 85, "loss": 0.4905, "lr": 1.7073496424427348e-08, "epoch": 0.981021897810219, "percentage": 98.82, "elapsed_time": "3:34:40", "remaining_time": "0:02:33", "throughput": 10257.17, "total_tokens": 132120576}
85
+ {"current_steps": 85, "total_steps": 85, "loss": 0.5088, "lr": 0.0, "epoch": 0.9927007299270073, "percentage": 100.0, "elapsed_time": "3:37:14", "remaining_time": "0:00:00", "throughput": 10257.11, "total_tokens": 133693440}
86
+ {"current_steps": 85, "total_steps": 85, "epoch": 0.9927007299270073, "percentage": 100.0, "elapsed_time": "3:37:36", "remaining_time": "0:00:00", "throughput": 10239.97, "total_tokens": 133693440}
trainer_state.json ADDED
@@ -0,0 +1,723 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9927007299270073,
5
+ "eval_steps": 500,
6
+ "global_step": 85,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01167883211678832,
13
+ "grad_norm": 2.102217674255371,
14
+ "learning_rate": 4.998292650357558e-05,
15
+ "loss": 1.2528,
16
+ "num_input_tokens_seen": 1572864,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.02335766423357664,
21
+ "grad_norm": 1.8151874542236328,
22
+ "learning_rate": 4.993172933464471e-05,
23
+ "loss": 1.1456,
24
+ "num_input_tokens_seen": 3145728,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.035036496350364967,
29
+ "grad_norm": 1.6563794612884521,
30
+ "learning_rate": 4.984647842238185e-05,
31
+ "loss": 1.0528,
32
+ "num_input_tokens_seen": 4718592,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.04671532846715328,
37
+ "grad_norm": 1.4128868579864502,
38
+ "learning_rate": 4.972729020927865e-05,
39
+ "loss": 0.9542,
40
+ "num_input_tokens_seen": 6291456,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.058394160583941604,
45
+ "grad_norm": 1.3149222135543823,
46
+ "learning_rate": 4.957432749209755e-05,
47
+ "loss": 0.8888,
48
+ "num_input_tokens_seen": 7864320,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.07007299270072993,
53
+ "grad_norm": 1.1523312330245972,
54
+ "learning_rate": 4.938779919951092e-05,
55
+ "loss": 0.8125,
56
+ "num_input_tokens_seen": 9437184,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.08175182481751825,
61
+ "grad_norm": 1.0558948516845703,
62
+ "learning_rate": 4.916796010672969e-05,
63
+ "loss": 0.7639,
64
+ "num_input_tokens_seen": 11010048,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.09343065693430656,
69
+ "grad_norm": 0.9993464350700378,
70
+ "learning_rate": 4.891511048751102e-05,
71
+ "loss": 0.7068,
72
+ "num_input_tokens_seen": 12582912,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.10510948905109489,
77
+ "grad_norm": 0.7277781367301941,
78
+ "learning_rate": 4.862959570402049e-05,
79
+ "loss": 0.6852,
80
+ "num_input_tokens_seen": 14155776,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.11678832116788321,
85
+ "grad_norm": 0.33135032653808594,
86
+ "learning_rate": 4.8311805735108894e-05,
87
+ "loss": 0.6571,
88
+ "num_input_tokens_seen": 15728640,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.12846715328467154,
93
+ "grad_norm": 0.24875016510486603,
94
+ "learning_rate": 4.796217464364808e-05,
95
+ "loss": 0.6347,
96
+ "num_input_tokens_seen": 17301504,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.14014598540145987,
101
+ "grad_norm": 0.219735249876976,
102
+ "learning_rate": 4.758117998365322e-05,
103
+ "loss": 0.6191,
104
+ "num_input_tokens_seen": 18874368,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.15182481751824817,
109
+ "grad_norm": 0.20399349927902222,
110
+ "learning_rate": 4.716934214800155e-05,
111
+ "loss": 0.5761,
112
+ "num_input_tokens_seen": 20447232,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.1635036496350365,
117
+ "grad_norm": 0.18108128011226654,
118
+ "learning_rate": 4.672722365763821e-05,
119
+ "loss": 0.5772,
120
+ "num_input_tokens_seen": 22020096,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.17518248175182483,
125
+ "grad_norm": 0.15887582302093506,
126
+ "learning_rate": 4.625542839324036e-05,
127
+ "loss": 0.5579,
128
+ "num_input_tokens_seen": 23592960,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.18686131386861313,
133
+ "grad_norm": 0.1574232280254364,
134
+ "learning_rate": 4.575460077038877e-05,
135
+ "loss": 0.5674,
136
+ "num_input_tokens_seen": 25165824,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.19854014598540146,
141
+ "grad_norm": 0.1397695690393448,
142
+ "learning_rate": 4.522542485937369e-05,
143
+ "loss": 0.5767,
144
+ "num_input_tokens_seen": 26738688,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.21021897810218979,
149
+ "grad_norm": 0.12465737760066986,
150
+ "learning_rate": 4.4668623450837085e-05,
151
+ "loss": 0.5559,
152
+ "num_input_tokens_seen": 28311552,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.22189781021897811,
157
+ "grad_norm": 0.10970822721719742,
158
+ "learning_rate": 4.408495706852758e-05,
159
+ "loss": 0.5603,
160
+ "num_input_tokens_seen": 29884416,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.23357664233576642,
165
+ "grad_norm": 0.10278748720884323,
166
+ "learning_rate": 4.347522293051648e-05,
167
+ "loss": 0.5541,
168
+ "num_input_tokens_seen": 31457280,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.24525547445255474,
173
+ "grad_norm": 0.09158932417631149,
174
+ "learning_rate": 4.284025386029381e-05,
175
+ "loss": 0.5358,
176
+ "num_input_tokens_seen": 33030144,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.2569343065693431,
181
+ "grad_norm": 0.09265461564064026,
182
+ "learning_rate": 4.218091714923157e-05,
183
+ "loss": 0.529,
184
+ "num_input_tokens_seen": 34603008,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.2686131386861314,
189
+ "grad_norm": 0.08593211323022842,
190
+ "learning_rate": 4.149811337196807e-05,
191
+ "loss": 0.5391,
192
+ "num_input_tokens_seen": 36175872,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.28029197080291973,
197
+ "grad_norm": 0.07743365317583084,
198
+ "learning_rate": 4.079277515633127e-05,
199
+ "loss": 0.5368,
200
+ "num_input_tokens_seen": 37748736,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.291970802919708,
205
+ "grad_norm": 0.08235425502061844,
206
+ "learning_rate": 4.0065865909481417e-05,
207
+ "loss": 0.5226,
208
+ "num_input_tokens_seen": 39321600,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.30364963503649633,
213
+ "grad_norm": 0.07797503471374512,
214
+ "learning_rate": 3.931837850201263e-05,
215
+ "loss": 0.5181,
216
+ "num_input_tokens_seen": 40894464,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.31532846715328466,
221
+ "grad_norm": 0.07740040868520737,
222
+ "learning_rate": 3.855133391181124e-05,
223
+ "loss": 0.5368,
224
+ "num_input_tokens_seen": 42467328,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.327007299270073,
229
+ "grad_norm": 0.07796761393547058,
230
+ "learning_rate": 3.7765779829522675e-05,
231
+ "loss": 0.5143,
232
+ "num_input_tokens_seen": 44040192,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.3386861313868613,
237
+ "grad_norm": 0.06905554234981537,
238
+ "learning_rate": 3.696278922753216e-05,
239
+ "loss": 0.5084,
240
+ "num_input_tokens_seen": 45613056,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.35036496350364965,
245
+ "grad_norm": 0.07220657169818878,
246
+ "learning_rate": 3.6143458894413465e-05,
247
+ "loss": 0.5026,
248
+ "num_input_tokens_seen": 47185920,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.362043795620438,
253
+ "grad_norm": 0.0667012482881546,
254
+ "learning_rate": 3.5308907936847594e-05,
255
+ "loss": 0.53,
256
+ "num_input_tokens_seen": 48758784,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.37372262773722625,
261
+ "grad_norm": 0.06964272260665894,
262
+ "learning_rate": 3.446027625105776e-05,
263
+ "loss": 0.532,
264
+ "num_input_tokens_seen": 50331648,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.3854014598540146,
269
+ "grad_norm": 0.06804265826940536,
270
+ "learning_rate": 3.3598722965848204e-05,
271
+ "loss": 0.5257,
272
+ "num_input_tokens_seen": 51904512,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.3970802919708029,
277
+ "grad_norm": 0.06633932888507843,
278
+ "learning_rate": 3.272542485937369e-05,
279
+ "loss": 0.5078,
280
+ "num_input_tokens_seen": 53477376,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.40875912408759124,
285
+ "grad_norm": 0.06411036849021912,
286
+ "learning_rate": 3.1841574751802076e-05,
287
+ "loss": 0.5012,
288
+ "num_input_tokens_seen": 55050240,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.42043795620437957,
293
+ "grad_norm": 0.06728877872228622,
294
+ "learning_rate": 3.094837987606547e-05,
295
+ "loss": 0.5117,
296
+ "num_input_tokens_seen": 56623104,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.4321167883211679,
301
+ "grad_norm": 0.06455469876527786,
302
+ "learning_rate": 3.0047060228925256e-05,
303
+ "loss": 0.516,
304
+ "num_input_tokens_seen": 58195968,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.44379562043795623,
309
+ "grad_norm": 0.06497868150472641,
310
+ "learning_rate": 2.913884690460325e-05,
311
+ "loss": 0.5189,
312
+ "num_input_tokens_seen": 59768832,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 0.4554744525547445,
317
+ "grad_norm": 0.062144387513399124,
318
+ "learning_rate": 2.8224980413255086e-05,
319
+ "loss": 0.4973,
320
+ "num_input_tokens_seen": 61341696,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 0.46715328467153283,
325
+ "grad_norm": 0.064272440969944,
326
+ "learning_rate": 2.7306708986582553e-05,
327
+ "loss": 0.4942,
328
+ "num_input_tokens_seen": 62914560,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.47883211678832116,
333
+ "grad_norm": 0.06099522113800049,
334
+ "learning_rate": 2.638528687289925e-05,
335
+ "loss": 0.5069,
336
+ "num_input_tokens_seen": 64487424,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 0.4905109489051095,
341
+ "grad_norm": 0.06261651962995529,
342
+ "learning_rate": 2.5461972623978247e-05,
343
+ "loss": 0.5218,
344
+ "num_input_tokens_seen": 66060288,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 0.5021897810218978,
349
+ "grad_norm": 0.059084702283144,
350
+ "learning_rate": 2.453802737602176e-05,
351
+ "loss": 0.5003,
352
+ "num_input_tokens_seen": 67633152,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 0.5138686131386861,
357
+ "grad_norm": 0.05868009477853775,
358
+ "learning_rate": 2.361471312710075e-05,
359
+ "loss": 0.4997,
360
+ "num_input_tokens_seen": 69206016,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.5255474452554745,
365
+ "grad_norm": 0.05527840927243233,
366
+ "learning_rate": 2.2693291013417453e-05,
367
+ "loss": 0.5045,
368
+ "num_input_tokens_seen": 70778880,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 0.5372262773722628,
373
+ "grad_norm": 0.05962590128183365,
374
+ "learning_rate": 2.1775019586744923e-05,
375
+ "loss": 0.4972,
376
+ "num_input_tokens_seen": 72351744,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 0.5489051094890511,
381
+ "grad_norm": 0.05784057453274727,
382
+ "learning_rate": 2.0861153095396748e-05,
383
+ "loss": 0.5174,
384
+ "num_input_tokens_seen": 73924608,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 0.5605839416058395,
389
+ "grad_norm": 0.0580497644841671,
390
+ "learning_rate": 1.995293977107475e-05,
391
+ "loss": 0.5086,
392
+ "num_input_tokens_seen": 75497472,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.5722627737226277,
397
+ "grad_norm": 0.05789309740066528,
398
+ "learning_rate": 1.9051620123934537e-05,
399
+ "loss": 0.4988,
400
+ "num_input_tokens_seen": 77070336,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 0.583941605839416,
405
+ "grad_norm": 0.05743095278739929,
406
+ "learning_rate": 1.815842524819793e-05,
407
+ "loss": 0.5047,
408
+ "num_input_tokens_seen": 78643200,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 0.5956204379562043,
413
+ "grad_norm": 0.05637204647064209,
414
+ "learning_rate": 1.7274575140626318e-05,
415
+ "loss": 0.4977,
416
+ "num_input_tokens_seen": 80216064,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 0.6072992700729927,
421
+ "grad_norm": 0.054249729961156845,
422
+ "learning_rate": 1.6401277034151798e-05,
423
+ "loss": 0.4775,
424
+ "num_input_tokens_seen": 81788928,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.618978102189781,
429
+ "grad_norm": 0.05614548176527023,
430
+ "learning_rate": 1.5539723748942245e-05,
431
+ "loss": 0.519,
432
+ "num_input_tokens_seen": 83361792,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 0.6306569343065693,
437
+ "grad_norm": 0.05785420536994934,
438
+ "learning_rate": 1.4691092063152417e-05,
439
+ "loss": 0.5102,
440
+ "num_input_tokens_seen": 84934656,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 0.6423357664233577,
445
+ "grad_norm": 0.05397043377161026,
446
+ "learning_rate": 1.3856541105586545e-05,
447
+ "loss": 0.4705,
448
+ "num_input_tokens_seen": 86507520,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 0.654014598540146,
453
+ "grad_norm": 0.05297677591443062,
454
+ "learning_rate": 1.303721077246784e-05,
455
+ "loss": 0.4965,
456
+ "num_input_tokens_seen": 88080384,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.6656934306569343,
461
+ "grad_norm": 0.05379556864500046,
462
+ "learning_rate": 1.223422017047733e-05,
463
+ "loss": 0.503,
464
+ "num_input_tokens_seen": 89653248,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 0.6773722627737226,
469
+ "grad_norm": 0.058262865990400314,
470
+ "learning_rate": 1.1448666088188764e-05,
471
+ "loss": 0.4921,
472
+ "num_input_tokens_seen": 91226112,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 0.689051094890511,
477
+ "grad_norm": 0.05684163048863411,
478
+ "learning_rate": 1.068162149798737e-05,
479
+ "loss": 0.5042,
480
+ "num_input_tokens_seen": 92798976,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 0.7007299270072993,
485
+ "grad_norm": 0.053847264498472214,
486
+ "learning_rate": 9.934134090518593e-06,
487
+ "loss": 0.5145,
488
+ "num_input_tokens_seen": 94371840,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.7124087591240876,
493
+ "grad_norm": 0.05480194464325905,
494
+ "learning_rate": 9.207224843668732e-06,
495
+ "loss": 0.4897,
496
+ "num_input_tokens_seen": 95944704,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 0.724087591240876,
501
+ "grad_norm": 0.05290277674794197,
502
+ "learning_rate": 8.50188662803194e-06,
503
+ "loss": 0.5033,
504
+ "num_input_tokens_seen": 97517568,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 0.7357664233576642,
509
+ "grad_norm": 0.05715763568878174,
510
+ "learning_rate": 7.819082850768434e-06,
511
+ "loss": 0.473,
512
+ "num_input_tokens_seen": 99090432,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 0.7474452554744525,
517
+ "grad_norm": 0.060164712369441986,
518
+ "learning_rate": 7.159746139706194e-06,
519
+ "loss": 0.5298,
520
+ "num_input_tokens_seen": 100663296,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 0.7591240875912408,
525
+ "grad_norm": 0.058020610362291336,
526
+ "learning_rate": 6.524777069483526e-06,
527
+ "loss": 0.4685,
528
+ "num_input_tokens_seen": 102236160,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 0.7708029197080292,
533
+ "grad_norm": 0.05399800464510918,
534
+ "learning_rate": 5.915042931472425e-06,
535
+ "loss": 0.4931,
536
+ "num_input_tokens_seen": 103809024,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 0.7824817518248175,
541
+ "grad_norm": 0.05629091337323189,
542
+ "learning_rate": 5.33137654916292e-06,
543
+ "loss": 0.4957,
544
+ "num_input_tokens_seen": 105381888,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 0.7941605839416058,
549
+ "grad_norm": 0.05569099634885788,
550
+ "learning_rate": 4.7745751406263165e-06,
551
+ "loss": 0.4924,
552
+ "num_input_tokens_seen": 106954752,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 0.8058394160583942,
557
+ "grad_norm": 0.05562946945428848,
558
+ "learning_rate": 4.245399229611238e-06,
559
+ "loss": 0.5041,
560
+ "num_input_tokens_seen": 108527616,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 0.8175182481751825,
565
+ "grad_norm": 0.05801980197429657,
566
+ "learning_rate": 3.7445716067596503e-06,
567
+ "loss": 0.4948,
568
+ "num_input_tokens_seen": 110100480,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 0.8291970802919708,
573
+ "grad_norm": 0.058106038719415665,
574
+ "learning_rate": 3.2727763423617913e-06,
575
+ "loss": 0.5085,
576
+ "num_input_tokens_seen": 111673344,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 0.8408759124087591,
581
+ "grad_norm": 0.052898507565259933,
582
+ "learning_rate": 2.8306578519984527e-06,
583
+ "loss": 0.5152,
584
+ "num_input_tokens_seen": 113246208,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 0.8525547445255475,
589
+ "grad_norm": 0.05265094339847565,
590
+ "learning_rate": 2.418820016346779e-06,
591
+ "loss": 0.4905,
592
+ "num_input_tokens_seen": 114819072,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 0.8642335766423358,
597
+ "grad_norm": 0.054221879690885544,
598
+ "learning_rate": 2.0378253563519247e-06,
599
+ "loss": 0.5023,
600
+ "num_input_tokens_seen": 116391936,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 0.8759124087591241,
605
+ "grad_norm": 0.0557856447994709,
606
+ "learning_rate": 1.6881942648911076e-06,
607
+ "loss": 0.4993,
608
+ "num_input_tokens_seen": 117964800,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 0.8875912408759125,
613
+ "grad_norm": 0.05209067091345787,
614
+ "learning_rate": 1.3704042959795132e-06,
615
+ "loss": 0.481,
616
+ "num_input_tokens_seen": 119537664,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 0.8992700729927007,
621
+ "grad_norm": 0.05373719707131386,
622
+ "learning_rate": 1.0848895124889818e-06,
623
+ "loss": 0.4806,
624
+ "num_input_tokens_seen": 121110528,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 0.910948905109489,
629
+ "grad_norm": 0.055330030620098114,
630
+ "learning_rate": 8.320398932703144e-07,
631
+ "loss": 0.4915,
632
+ "num_input_tokens_seen": 122683392,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 0.9226277372262773,
637
+ "grad_norm": 0.05640307813882828,
638
+ "learning_rate": 6.122008004890851e-07,
639
+ "loss": 0.4937,
640
+ "num_input_tokens_seen": 124256256,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 0.9343065693430657,
645
+ "grad_norm": 0.05659601837396622,
646
+ "learning_rate": 4.256725079024554e-07,
647
+ "loss": 0.5152,
648
+ "num_input_tokens_seen": 125829120,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 0.945985401459854,
653
+ "grad_norm": 0.05199190601706505,
654
+ "learning_rate": 2.7270979072135104e-07,
655
+ "loss": 0.4832,
656
+ "num_input_tokens_seen": 127401984,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 0.9576642335766423,
661
+ "grad_norm": 0.05153407156467438,
662
+ "learning_rate": 1.5352157761815977e-07,
663
+ "loss": 0.4975,
664
+ "num_input_tokens_seen": 128974848,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 0.9693430656934306,
669
+ "grad_norm": 0.05456986650824547,
670
+ "learning_rate": 6.827066535529946e-08,
671
+ "loss": 0.4887,
672
+ "num_input_tokens_seen": 130547712,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 0.981021897810219,
677
+ "grad_norm": 0.057446081191301346,
678
+ "learning_rate": 1.7073496424427348e-08,
679
+ "loss": 0.4905,
680
+ "num_input_tokens_seen": 132120576,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 0.9927007299270073,
685
+ "grad_norm": 0.05915559083223343,
686
+ "learning_rate": 0.0,
687
+ "loss": 0.5088,
688
+ "num_input_tokens_seen": 133693440,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 0.9927007299270073,
693
+ "num_input_tokens_seen": 133693440,
694
+ "step": 85,
695
+ "total_flos": 5.206772811237949e+18,
696
+ "train_loss": 0.5589800634804893,
697
+ "train_runtime": 13057.0702,
698
+ "train_samples_per_second": 2.516,
699
+ "train_steps_per_second": 0.007
700
+ }
701
+ ],
702
+ "logging_steps": 1,
703
+ "max_steps": 85,
704
+ "num_input_tokens_seen": 133693440,
705
+ "num_train_epochs": 1,
706
+ "save_steps": 1000,
707
+ "stateful_callbacks": {
708
+ "TrainerControl": {
709
+ "args": {
710
+ "should_epoch_stop": false,
711
+ "should_evaluate": false,
712
+ "should_log": false,
713
+ "should_save": true,
714
+ "should_training_stop": true
715
+ },
716
+ "attributes": {}
717
+ }
718
+ },
719
+ "total_flos": 5.206772811237949e+18,
720
+ "train_batch_size": 16,
721
+ "trial_name": null,
722
+ "trial_params": null
723
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dfe9b9f31fd962583f6b7768605329d948c74f32677992d80a611eb33aaa2f5
3
+ size 5688
training_args.yaml ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apollo_rank: 256
2
+ apollo_scale: 1
3
+ apollo_target: all
4
+ apollo_update_interval: 200
5
+ bf16: true
6
+ cutoff_len: 4096
7
+ dataset: codes_nlx_under8
8
+ dataset_dir: data
9
+ ddp_timeout: 180000000
10
+ do_train: true
11
+ enable_liger_kernel: true
12
+ finetuning_type: freeze
13
+ flash_attn: auto
14
+ freeze_trainable_layers: 2
15
+ freeze_trainable_modules: all
16
+ gradient_accumulation_steps: 8
17
+ include_num_input_tokens_seen: true
18
+ learning_rate: 5.0e-05
19
+ logging_steps: 1
20
+ lr_scheduler_type: cosine
21
+ max_grad_norm: 1.0
22
+ max_samples: 50000000
23
+ model_name_or_path: deepseek-ai/deepseek-coder-7b-instruct-v1.5
24
+ neat_packing: true
25
+ num_train_epochs: 1.0
26
+ output_dir: saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nlx
27
+ packing: true
28
+ per_device_train_batch_size: 16
29
+ plot_loss: true
30
+ preprocessing_num_workers: 16
31
+ report_to: none
32
+ rope_scaling: llama3
33
+ save_steps: 1000
34
+ stage: sft
35
+ template: deepseekcoder
36
+ trust_remote_code: true
37
+ use_apollo: true
38
+ use_llama_pro: true
39
+ warmup_steps: 0
training_loss.png ADDED