k1h0 commited on
Commit
29e2abb
·
verified ·
1 Parent(s): 71f00a4

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: deepseek-ai/deepseek-coder-7b-instruct-v1.5
5
+ tags:
6
+ - llama-factory
7
+ - freeze
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: deepseek_under8_nsx
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # deepseek_under8_nsx
18
+
19
+ This model is a fine-tuned version of [deepseek-ai/deepseek-coder-7b-instruct-v1.5](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5) on the codes_nsx_under8 dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 3
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 384
46
+ - total_eval_batch_size: 24
47
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine
49
+ - num_epochs: 1.0
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.48.2
58
+ - Pytorch 2.5.1+cu124
59
+ - Datasets 3.2.0
60
+ - Tokenizers 0.21.0
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9907578558225508,
3
+ "num_input_tokens_seen": 105381888,
4
+ "total_flos": 4.104162098269913e+18,
5
+ "train_loss": 0.8075656152483243,
6
+ "train_runtime": 10309.5741,
7
+ "train_samples_per_second": 2.518,
8
+ "train_steps_per_second": 0.006
9
+ }
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 100000,
9
+ "eos_token_id": 100015,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 11008,
15
+ "max_position_embeddings": 4096,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 30,
20
+ "num_key_value_heads": 32,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-06,
23
+ "rope_scaling": {
24
+ "factor": 1.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 4096,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 10000.0,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.48.2",
34
+ "use_cache": false,
35
+ "vocab_size": 102400
36
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100000,
4
+ "eos_token_id": 100015,
5
+ "transformers_version": "4.48.2"
6
+ }
llamaboard_config.yaml ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ top.booster: liger_kernel
2
+ top.checkpoint_path: null
3
+ top.finetuning_type: freeze
4
+ top.model_name: DeepSeek-Coder-7B-Instruct
5
+ top.quantization_bit: none
6
+ top.quantization_method: bitsandbytes
7
+ top.rope_scaling: llama3
8
+ top.template: deepseekcoder
9
+ train.additional_target: ''
10
+ train.apollo_rank: 256
11
+ train.apollo_scale: 1
12
+ train.apollo_target: all
13
+ train.apollo_update_interval: 200
14
+ train.badam_mode: layer
15
+ train.badam_switch_interval: 50
16
+ train.badam_switch_mode: ascending
17
+ train.badam_update_ratio: 0.05
18
+ train.batch_size: 16
19
+ train.compute_type: bf16
20
+ train.create_new_adapter: false
21
+ train.cutoff_len: 4096
22
+ train.dataset:
23
+ - codes_nsx_under8
24
+ train.dataset_dir: data
25
+ train.ds_offload: false
26
+ train.ds_stage: none
27
+ train.extra_args: '{}'
28
+ train.freeze_extra_modules: ''
29
+ train.freeze_trainable_layers: 2
30
+ train.freeze_trainable_modules: all
31
+ train.galore_rank: 16
32
+ train.galore_scale: 2
33
+ train.galore_target: all
34
+ train.galore_update_interval: 200
35
+ train.gradient_accumulation_steps: 8
36
+ train.learning_rate: 5e-5
37
+ train.logging_steps: 1
38
+ train.lora_alpha: 16
39
+ train.lora_dropout: 0
40
+ train.lora_rank: 8
41
+ train.lora_target: ''
42
+ train.loraplus_lr_ratio: 0
43
+ train.lr_scheduler_type: cosine
44
+ train.mask_history: false
45
+ train.max_grad_norm: '1.0'
46
+ train.max_samples: '50000000'
47
+ train.neat_packing: true
48
+ train.neftune_alpha: 0
49
+ train.num_train_epochs: '1'
50
+ train.packing: true
51
+ train.ppo_score_norm: false
52
+ train.ppo_whiten_rewards: false
53
+ train.pref_beta: 0.1
54
+ train.pref_ftx: 0
55
+ train.pref_loss: sigmoid
56
+ train.report_to:
57
+ - none
58
+ train.resize_vocab: false
59
+ train.reward_model: null
60
+ train.save_steps: 1000
61
+ train.swanlab_api_key: ''
62
+ train.swanlab_mode: cloud
63
+ train.swanlab_project: llamafactory
64
+ train.swanlab_run_name: ''
65
+ train.swanlab_workspace: ''
66
+ train.train_on_prompt: false
67
+ train.training_stage: Supervised Fine-Tuning
68
+ train.use_apollo: true
69
+ train.use_badam: false
70
+ train.use_dora: false
71
+ train.use_galore: false
72
+ train.use_llama_pro: true
73
+ train.use_pissa: false
74
+ train.use_rslora: false
75
+ train.use_swanlab: false
76
+ train.val_size: 0
77
+ train.warmup_steps: 0
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28aba7f82f5ce656674a3e922d68c0b7bd12d2f2e6da09e47fa72eec539c53c2
3
+ size 4987202208
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a14632752c64660abaecefd70025664d95317e19b351e85c08a61c35d2c3dbd9
3
+ size 4980944400
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5925e3a3c3092530a5d595f6643368705428457d37f43b40a0c850464ebbb2d
3
+ size 4662149984
model.safetensors.index.json ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 14630264832
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00003-of-00003.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00003.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
225
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
226
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
227
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
228
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
229
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
230
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
231
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
232
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
233
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
234
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
235
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
236
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
237
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
238
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
239
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
240
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
241
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
242
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
272
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
273
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
275
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
276
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
277
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
278
+ "model.norm.weight": "model-00003-of-00003.safetensors"
279
+ }
280
+ }
running_log.txt ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [INFO|2025-07-09 15:57:37] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/config.json
2
+
3
+ [INFO|2025-07-09 15:57:37] configuration_utils.py:768 >> Model config LlamaConfig {
4
+ "_name_or_path": "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
5
+ "architectures": [
6
+ "LlamaForCausalLM"
7
+ ],
8
+ "attention_bias": false,
9
+ "attention_dropout": 0.0,
10
+ "bos_token_id": 100000,
11
+ "eos_token_id": 100015,
12
+ "head_dim": 128,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 4096,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 11008,
17
+ "max_position_embeddings": 4096,
18
+ "mlp_bias": false,
19
+ "model_type": "llama",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 30,
22
+ "num_key_value_heads": 32,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-06,
25
+ "rope_scaling": null,
26
+ "rope_theta": 10000.0,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "bfloat16",
29
+ "transformers_version": "4.48.2",
30
+ "use_cache": true,
31
+ "vocab_size": 102400
32
+ }
33
+
34
+
35
+ [INFO|2025-07-09 15:57:38] tokenization_utils_base.py:2034 >> loading file tokenizer.model from cache at None
36
+
37
+ [INFO|2025-07-09 15:57:38] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/tokenizer.json
38
+
39
+ [INFO|2025-07-09 15:57:38] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at None
40
+
41
+ [INFO|2025-07-09 15:57:38] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at None
42
+
43
+ [INFO|2025-07-09 15:57:38] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/tokenizer_config.json
44
+
45
+ [INFO|2025-07-09 15:57:38] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
46
+
47
+ [INFO|2025-07-09 15:57:38] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
48
+
49
+ [INFO|2025-07-09 15:57:39] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/config.json
50
+
51
+ [INFO|2025-07-09 15:57:39] configuration_utils.py:768 >> Model config LlamaConfig {
52
+ "_name_or_path": "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
53
+ "architectures": [
54
+ "LlamaForCausalLM"
55
+ ],
56
+ "attention_bias": false,
57
+ "attention_dropout": 0.0,
58
+ "bos_token_id": 100000,
59
+ "eos_token_id": 100015,
60
+ "head_dim": 128,
61
+ "hidden_act": "silu",
62
+ "hidden_size": 4096,
63
+ "initializer_range": 0.02,
64
+ "intermediate_size": 11008,
65
+ "max_position_embeddings": 4096,
66
+ "mlp_bias": false,
67
+ "model_type": "llama",
68
+ "num_attention_heads": 32,
69
+ "num_hidden_layers": 30,
70
+ "num_key_value_heads": 32,
71
+ "pretraining_tp": 1,
72
+ "rms_norm_eps": 1e-06,
73
+ "rope_scaling": null,
74
+ "rope_theta": 10000.0,
75
+ "tie_word_embeddings": false,
76
+ "torch_dtype": "bfloat16",
77
+ "transformers_version": "4.48.2",
78
+ "use_cache": true,
79
+ "vocab_size": 102400
80
+ }
81
+
82
+
83
+ [INFO|2025-07-09 15:57:39] tokenization_utils_base.py:2034 >> loading file tokenizer.model from cache at None
84
+
85
+ [INFO|2025-07-09 15:57:39] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/tokenizer.json
86
+
87
+ [INFO|2025-07-09 15:57:39] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at None
88
+
89
+ [INFO|2025-07-09 15:57:39] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at None
90
+
91
+ [INFO|2025-07-09 15:57:39] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/tokenizer_config.json
92
+
93
+ [INFO|2025-07-09 15:57:39] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
94
+
95
+ [INFO|2025-07-09 15:57:39] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
96
+
97
+ [INFO|2025-07-09 15:57:40] logging.py:157 >> Loading dataset Codes3_query_filtered_553474_mark_less_than_8.0.json...
98
+
99
+ [INFO|2025-07-09 15:58:18] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/config.json
100
+
101
+ [INFO|2025-07-09 15:58:18] configuration_utils.py:768 >> Model config LlamaConfig {
102
+ "_name_or_path": "deepseek-ai/deepseek-coder-7b-instruct-v1.5",
103
+ "architectures": [
104
+ "LlamaForCausalLM"
105
+ ],
106
+ "attention_bias": false,
107
+ "attention_dropout": 0.0,
108
+ "bos_token_id": 100000,
109
+ "eos_token_id": 100015,
110
+ "head_dim": 128,
111
+ "hidden_act": "silu",
112
+ "hidden_size": 4096,
113
+ "initializer_range": 0.02,
114
+ "intermediate_size": 11008,
115
+ "max_position_embeddings": 4096,
116
+ "mlp_bias": false,
117
+ "model_type": "llama",
118
+ "num_attention_heads": 32,
119
+ "num_hidden_layers": 30,
120
+ "num_key_value_heads": 32,
121
+ "pretraining_tp": 1,
122
+ "rms_norm_eps": 1e-06,
123
+ "rope_scaling": null,
124
+ "rope_theta": 10000.0,
125
+ "tie_word_embeddings": false,
126
+ "torch_dtype": "bfloat16",
127
+ "transformers_version": "4.48.2",
128
+ "use_cache": true,
129
+ "vocab_size": 102400
130
+ }
131
+
132
+
133
+ [WARNING|2025-07-09 15:58:18] logging.py:162 >> Input length is smaller than max length. Consider increase input length.
134
+
135
+ [INFO|2025-07-09 15:58:18] logging.py:157 >> Using llama3 scaling strategy and setting scaling factor to 1.0.
136
+
137
+ [INFO|2025-07-09 15:58:18] logging.py:157 >> Using block diagonal attention for sequence packing without cross-attention.
138
+
139
+ [INFO|2025-07-09 15:58:18] logging.py:157 >> Liger kernel has been applied to the model.
140
+
141
+ [INFO|2025-07-09 15:58:18] modeling_utils.py:3904 >> loading weights file model.safetensors from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/model.safetensors.index.json
142
+
143
+ [INFO|2025-07-09 15:58:18] modeling_utils.py:1582 >> Instantiating LlamaForCausalLM model under default dtype torch.bfloat16.
144
+
145
+ [INFO|2025-07-09 15:58:18] configuration_utils.py:1140 >> Generate config GenerationConfig {
146
+ "bos_token_id": 100000,
147
+ "eos_token_id": 100015
148
+ }
149
+
150
+
151
+ [INFO|2025-07-09 15:58:26] modeling_utils.py:4888 >> All model checkpoint weights were used when initializing LlamaForCausalLM.
152
+
153
+
154
+ [INFO|2025-07-09 15:58:26] modeling_utils.py:4896 >> All the weights of LlamaForCausalLM were initialized from the model checkpoint at deepseek-ai/deepseek-coder-7b-instruct-v1.5.
155
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use LlamaForCausalLM for predictions without further training.
156
+
157
+ [INFO|2025-07-09 15:58:27] configuration_utils.py:1095 >> loading configuration file generation_config.json from cache at /home/kiho/.cache/huggingface/hub/models--deepseek-ai--deepseek-coder-7b-instruct-v1.5/snapshots/2a050a4c59d687a85324d32e147517992117ed30/generation_config.json
158
+
159
+ [INFO|2025-07-09 15:58:27] configuration_utils.py:1140 >> Generate config GenerationConfig {
160
+ "bos_token_id": 100000,
161
+ "eos_token_id": 100015
162
+ }
163
+
164
+
165
+ [INFO|2025-07-09 15:58:27] logging.py:157 >> Gradient checkpointing enabled.
166
+
167
+ [INFO|2025-07-09 15:58:27] logging.py:157 >> Using torch SDPA for faster training and inference.
168
+
169
+ [INFO|2025-07-09 15:58:27] logging.py:157 >> Upcasting trainable params to float32.
170
+
171
+ [INFO|2025-07-09 15:58:27] logging.py:157 >> Fine-tuning method: Freeze
172
+
173
+ [INFO|2025-07-09 15:58:27] logging.py:157 >> Set trainable layers: .14.,.29.
174
+
175
+ [INFO|2025-07-09 15:58:27] logging.py:157 >> trainable params: 404,766,720 || all params: 6,910,365,696 || trainable%: 5.8574
176
+
177
+ [INFO|2025-07-09 15:58:27] trainer.py:741 >> Using auto half precision backend
178
+
179
+ [INFO|2025-07-09 15:58:27] logging.py:157 >> Found linear modules: k_proj,q_proj,v_proj,down_proj,gate_proj,up_proj,o_proj
180
+
181
+ [INFO|2025-07-09 15:58:27] logging.py:157 >> Using APOLLO optimizer with args: {'rank': 256, 'proj': 'random', 'proj_type': 'std', 'update_proj_gap': 200, 'scale': 1, 'scale_type': 'channel', 'scale_front': False}.
182
+
183
+ [INFO|2025-07-09 15:58:27] trainer.py:2369 >> ***** Running training *****
184
+
185
+ [INFO|2025-07-09 15:58:27] trainer.py:2370 >> Num examples = 25,964
186
+
187
+ [INFO|2025-07-09 15:58:27] trainer.py:2371 >> Num Epochs = 1
188
+
189
+ [INFO|2025-07-09 15:58:27] trainer.py:2372 >> Instantaneous batch size per device = 16
190
+
191
+ [INFO|2025-07-09 15:58:27] trainer.py:2375 >> Total train batch size (w. parallel, distributed & accumulation) = 384
192
+
193
+ [INFO|2025-07-09 15:58:27] trainer.py:2376 >> Gradient Accumulation steps = 8
194
+
195
+ [INFO|2025-07-09 15:58:27] trainer.py:2377 >> Total optimization steps = 67
196
+
197
+ [INFO|2025-07-09 15:58:27] trainer.py:2378 >> Number of trainable parameters = 404,766,720
198
+
199
+ [INFO|2025-07-09 16:01:10] logging.py:157 >> {'loss': 1.5801, 'learning_rate': 4.9973e-05, 'epoch': 0.01, 'throughput': 9730.57}
200
+
201
+ [INFO|2025-07-09 16:03:43] logging.py:157 >> {'loss': 1.3696, 'learning_rate': 4.9890e-05, 'epoch': 0.03, 'throughput': 9996.29}
202
+
203
+ [INFO|2025-07-09 16:06:16] logging.py:157 >> {'loss': 1.2964, 'learning_rate': 4.9753e-05, 'epoch': 0.04, 'throughput': 10081.95}
204
+
205
+ [INFO|2025-07-09 16:08:49] logging.py:157 >> {'loss': 1.2465, 'learning_rate': 4.9562e-05, 'epoch': 0.06, 'throughput': 10131.27}
206
+
207
+ [INFO|2025-07-09 16:11:22] logging.py:157 >> {'loss': 1.1284, 'learning_rate': 4.9316e-05, 'epoch': 0.07, 'throughput': 10163.81}
208
+
209
+ [INFO|2025-07-09 16:13:55] logging.py:157 >> {'loss': 1.0455, 'learning_rate': 4.9017e-05, 'epoch': 0.09, 'throughput': 10183.83}
210
+
211
+ [INFO|2025-07-09 16:16:28] logging.py:157 >> {'loss': 0.9850, 'learning_rate': 4.8665e-05, 'epoch': 0.10, 'throughput': 10199.69}
212
+
213
+ [INFO|2025-07-09 16:19:01] logging.py:157 >> {'loss': 0.9570, 'learning_rate': 4.8262e-05, 'epoch': 0.12, 'throughput': 10208.81}
214
+
215
+ [INFO|2025-07-09 16:21:34] logging.py:157 >> {'loss': 0.9121, 'learning_rate': 4.7807e-05, 'epoch': 0.13, 'throughput': 10215.43}
216
+
217
+ [INFO|2025-07-09 16:24:07] logging.py:157 >> {'loss': 0.8857, 'learning_rate': 4.7302e-05, 'epoch': 0.15, 'throughput': 10220.33}
218
+
219
+ [INFO|2025-07-09 16:26:40] logging.py:157 >> {'loss': 0.8871, 'learning_rate': 4.6748e-05, 'epoch': 0.16, 'throughput': 10224.60}
220
+
221
+ [INFO|2025-07-09 16:29:14] logging.py:157 >> {'loss': 0.8668, 'learning_rate': 4.6146e-05, 'epoch': 0.18, 'throughput': 10228.07}
222
+
223
+ [INFO|2025-07-09 16:31:47] logging.py:157 >> {'loss': 0.8264, 'learning_rate': 4.5497e-05, 'epoch': 0.19, 'throughput': 10231.09}
224
+
225
+ [INFO|2025-07-09 16:34:20] logging.py:157 >> {'loss': 0.8316, 'learning_rate': 4.4804e-05, 'epoch': 0.21, 'throughput': 10233.42}
226
+
227
+ [INFO|2025-07-09 16:36:53] logging.py:157 >> {'loss': 0.8214, 'learning_rate': 4.4067e-05, 'epoch': 0.22, 'throughput': 10236.31}
228
+
229
+ [INFO|2025-07-09 16:39:26] logging.py:157 >> {'loss': 0.8074, 'learning_rate': 4.3288e-05, 'epoch': 0.24, 'throughput': 10238.37}
230
+
231
+ [INFO|2025-07-09 16:41:59] logging.py:157 >> {'loss': 0.7947, 'learning_rate': 4.2469e-05, 'epoch': 0.25, 'throughput': 10239.79}
232
+
233
+ [INFO|2025-07-09 16:44:33] logging.py:157 >> {'loss': 0.7868, 'learning_rate': 4.1612e-05, 'epoch': 0.27, 'throughput': 10240.87}
234
+
235
+ [INFO|2025-07-09 16:47:06] logging.py:157 >> {'loss': 0.7657, 'learning_rate': 4.0718e-05, 'epoch': 0.28, 'throughput': 10241.86}
236
+
237
+ [INFO|2025-07-09 16:49:39] logging.py:157 >> {'loss': 0.7821, 'learning_rate': 3.9789e-05, 'epoch': 0.30, 'throughput': 10242.44}
238
+
239
+ [INFO|2025-07-09 16:52:13] logging.py:157 >> {'loss': 0.7640, 'learning_rate': 3.8828e-05, 'epoch': 0.31, 'throughput': 10242.80}
240
+
241
+ [INFO|2025-07-09 16:54:46] logging.py:157 >> {'loss': 0.7781, 'learning_rate': 3.7837e-05, 'epoch': 0.33, 'throughput': 10243.48}
242
+
243
+ [INFO|2025-07-09 16:57:19] logging.py:157 >> {'loss': 0.7663, 'learning_rate': 3.6817e-05, 'epoch': 0.34, 'throughput': 10244.34}
244
+
245
+ [INFO|2025-07-09 16:59:53] logging.py:157 >> {'loss': 0.7303, 'learning_rate': 3.5772e-05, 'epoch': 0.35, 'throughput': 10245.23}
246
+
247
+ [INFO|2025-07-09 17:02:26] logging.py:157 >> {'loss': 0.7626, 'learning_rate': 3.4702e-05, 'epoch': 0.37, 'throughput': 10245.49}
248
+
249
+ [INFO|2025-07-09 17:04:59] logging.py:157 >> {'loss': 0.7709, 'learning_rate': 3.3612e-05, 'epoch': 0.38, 'throughput': 10246.02}
250
+
251
+ [INFO|2025-07-09 17:07:33] logging.py:157 >> {'loss': 0.7638, 'learning_rate': 3.2502e-05, 'epoch': 0.40, 'throughput': 10246.34}
252
+
253
+ [INFO|2025-07-09 17:10:06] logging.py:157 >> {'loss': 0.7561, 'learning_rate': 3.1376e-05, 'epoch': 0.41, 'throughput': 10246.39}
254
+
255
+ [INFO|2025-07-09 17:12:40] logging.py:157 >> {'loss': 0.7372, 'learning_rate': 3.0236e-05, 'epoch': 0.43, 'throughput': 10246.90}
256
+
257
+ [INFO|2025-07-09 17:15:13] logging.py:157 >> {'loss': 0.7281, 'learning_rate': 2.9084e-05, 'epoch': 0.44, 'throughput': 10246.62}
258
+
259
+ [INFO|2025-07-09 17:17:47] logging.py:157 >> {'loss': 0.7601, 'learning_rate': 2.7924e-05, 'epoch': 0.46, 'throughput': 10246.53}
260
+
261
+ [INFO|2025-07-09 17:20:20] logging.py:157 >> {'loss': 0.7296, 'learning_rate': 2.6757e-05, 'epoch': 0.47, 'throughput': 10246.68}
262
+
263
+ [INFO|2025-07-09 17:22:54] logging.py:157 >> {'loss': 0.7410, 'learning_rate': 2.5586e-05, 'epoch': 0.49, 'throughput': 10246.53}
264
+
265
+ [INFO|2025-07-09 17:25:27] logging.py:157 >> {'loss': 0.7251, 'learning_rate': 2.4414e-05, 'epoch': 0.50, 'throughput': 10246.23}
266
+
267
+ [INFO|2025-07-09 17:28:01] logging.py:157 >> {'loss': 0.7385, 'learning_rate': 2.3243e-05, 'epoch': 0.52, 'throughput': 10246.00}
268
+
269
+ [INFO|2025-07-09 17:30:35] logging.py:157 >> {'loss': 0.7460, 'learning_rate': 2.2076e-05, 'epoch': 0.53, 'throughput': 10245.76}
270
+
271
+ [INFO|2025-07-09 17:33:08] logging.py:157 >> {'loss': 0.7315, 'learning_rate': 2.0916e-05, 'epoch': 0.55, 'throughput': 10245.41}
272
+
273
+ [INFO|2025-07-09 17:35:42] logging.py:157 >> {'loss': 0.7267, 'learning_rate': 1.9764e-05, 'epoch': 0.56, 'throughput': 10245.47}
274
+
275
+ [INFO|2025-07-09 17:38:15] logging.py:157 >> {'loss': 0.7443, 'learning_rate': 1.8624e-05, 'epoch': 0.58, 'throughput': 10246.13}
276
+
277
+ [INFO|2025-07-09 17:40:48] logging.py:157 >> {'loss': 0.7163, 'learning_rate': 1.7498e-05, 'epoch': 0.59, 'throughput': 10246.67}
278
+
279
+ [INFO|2025-07-09 17:43:22] logging.py:157 >> {'loss': 0.7300, 'learning_rate': 1.6388e-05, 'epoch': 0.61, 'throughput': 10246.53}
280
+
281
+ [INFO|2025-07-09 17:45:55] logging.py:157 >> {'loss': 0.7230, 'learning_rate': 1.5298e-05, 'epoch': 0.62, 'throughput': 10246.38}
282
+
283
+ [INFO|2025-07-09 17:48:29] logging.py:157 >> {'loss': 0.7176, 'learning_rate': 1.4228e-05, 'epoch': 0.64, 'throughput': 10246.13}
284
+
285
+ [INFO|2025-07-09 17:51:03] logging.py:157 >> {'loss': 0.7066, 'learning_rate': 1.3183e-05, 'epoch': 0.65, 'throughput': 10245.31}
286
+
287
+ [INFO|2025-07-09 17:53:37] logging.py:157 >> {'loss': 0.7244, 'learning_rate': 1.2163e-05, 'epoch': 0.67, 'throughput': 10245.33}
288
+
289
+ [INFO|2025-07-09 17:56:10] logging.py:157 >> {'loss': 0.7349, 'learning_rate': 1.1172e-05, 'epoch': 0.68, 'throughput': 10245.14}
290
+
291
+ [INFO|2025-07-09 17:58:44] logging.py:157 >> {'loss': 0.7487, 'learning_rate': 1.0211e-05, 'epoch': 0.70, 'throughput': 10245.15}
292
+
293
+ [INFO|2025-07-09 18:01:17] logging.py:157 >> {'loss': 0.7381, 'learning_rate': 9.2822e-06, 'epoch': 0.71, 'throughput': 10245.27}
294
+
295
+ [INFO|2025-07-09 18:03:51] logging.py:157 >> {'loss': 0.7262, 'learning_rate': 8.3882e-06, 'epoch': 0.72, 'throughput': 10245.11}
296
+
297
+ [INFO|2025-07-09 18:06:25] logging.py:157 >> {'loss': 0.7473, 'learning_rate': 7.5308e-06, 'epoch': 0.74, 'throughput': 10244.43}
298
+
299
+ [INFO|2025-07-09 18:08:58] logging.py:157 >> {'loss': 0.6998, 'learning_rate': 6.7117e-06, 'epoch': 0.75, 'throughput': 10244.28}
300
+
301
+ [INFO|2025-07-09 18:11:32] logging.py:157 >> {'loss': 0.7218, 'learning_rate': 5.9329e-06, 'epoch': 0.77, 'throughput': 10244.28}
302
+
303
+ [INFO|2025-07-09 18:14:06] logging.py:157 >> {'loss': 0.7314, 'learning_rate': 5.1959e-06, 'epoch': 0.78, 'throughput': 10244.27}
304
+
305
+ [INFO|2025-07-09 18:16:39] logging.py:157 >> {'loss': 0.7028, 'learning_rate': 4.5025e-06, 'epoch': 0.80, 'throughput': 10244.46}
306
+
307
+ [INFO|2025-07-09 18:19:13] logging.py:157 >> {'loss': 0.7084, 'learning_rate': 3.8542e-06, 'epoch': 0.81, 'throughput': 10244.41}
308
+
309
+ [INFO|2025-07-09 18:21:46] logging.py:157 >> {'loss': 0.7223, 'learning_rate': 3.2523e-06, 'epoch': 0.83, 'throughput': 10244.78}
310
+
311
+ [INFO|2025-07-09 18:24:19] logging.py:157 >> {'loss': 0.7195, 'learning_rate': 2.6983e-06, 'epoch': 0.84, 'throughput': 10244.84}
312
+
313
+ [INFO|2025-07-09 18:26:53] logging.py:157 >> {'loss': 0.7431, 'learning_rate': 2.1933e-06, 'epoch': 0.86, 'throughput': 10244.76}
314
+
315
+ [INFO|2025-07-09 18:29:26] logging.py:157 >> {'loss': 0.7320, 'learning_rate': 1.7384e-06, 'epoch': 0.87, 'throughput': 10245.04}
316
+
317
+ [INFO|2025-07-09 18:32:00] logging.py:157 >> {'loss': 0.7302, 'learning_rate': 1.3346e-06, 'epoch': 0.89, 'throughput': 10245.15}
318
+
319
+ [INFO|2025-07-09 18:34:33] logging.py:157 >> {'loss': 0.7197, 'learning_rate': 9.8287e-07, 'epoch': 0.90, 'throughput': 10244.99}
320
+
321
+ [INFO|2025-07-09 18:37:07] logging.py:157 >> {'loss': 0.7203, 'learning_rate': 6.8393e-07, 'epoch': 0.92, 'throughput': 10244.88}
322
+
323
+ [INFO|2025-07-09 18:39:40] logging.py:157 >> {'loss': 0.7474, 'learning_rate': 4.3844e-07, 'epoch': 0.93, 'throughput': 10244.81}
324
+
325
+ [INFO|2025-07-09 18:42:14] logging.py:157 >> {'loss': 0.7403, 'learning_rate': 2.4694e-07, 'epoch': 0.95, 'throughput': 10244.76}
326
+
327
+ [INFO|2025-07-09 18:44:48] logging.py:157 >> {'loss': 0.7327, 'learning_rate': 1.0985e-07, 'epoch': 0.96, 'throughput': 10244.72}
328
+
329
+ [INFO|2025-07-09 18:47:21] logging.py:157 >> {'loss': 0.7250, 'learning_rate': 2.7478e-08, 'epoch': 0.98, 'throughput': 10244.49}
330
+
331
+ [INFO|2025-07-09 18:49:55] logging.py:157 >> {'loss': 0.7209, 'learning_rate': 0.0000e+00, 'epoch': 0.99, 'throughput': 10244.41}
332
+
333
+ [INFO|2025-07-09 18:49:55] trainer.py:3910 >> Saving model checkpoint to saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nsx/checkpoint-67
334
+
335
+ [INFO|2025-07-09 18:49:55] configuration_utils.py:420 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nsx/checkpoint-67/config.json
336
+
337
+ [INFO|2025-07-09 18:49:55] configuration_utils.py:909 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nsx/checkpoint-67/generation_config.json
338
+
339
+ [INFO|2025-07-09 18:50:16] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 3 checkpoint shards. You can find where each parameters has been saved in the index located at saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nsx/checkpoint-67/model.safetensors.index.json.
340
+
341
+ [INFO|2025-07-09 18:50:16] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nsx/checkpoint-67/tokenizer_config.json
342
+
343
+ [INFO|2025-07-09 18:50:16] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nsx/checkpoint-67/special_tokens_map.json
344
+
345
+ [INFO|2025-07-09 18:50:17] trainer.py:2643 >>
346
+
347
+ Training completed. Do not forget to share your model on huggingface.co/models =)
348
+
349
+
350
+
351
+ [INFO|2025-07-09 18:50:17] trainer.py:3910 >> Saving model checkpoint to saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nsx
352
+
353
+ [INFO|2025-07-09 18:50:17] configuration_utils.py:420 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nsx/config.json
354
+
355
+ [INFO|2025-07-09 18:50:17] configuration_utils.py:909 >> Configuration saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nsx/generation_config.json
356
+
357
+ [INFO|2025-07-09 18:50:39] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 3 checkpoint shards. You can find where each parameters has been saved in the index located at saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nsx/model.safetensors.index.json.
358
+
359
+ [INFO|2025-07-09 18:50:39] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nsx/tokenizer_config.json
360
+
361
+ [INFO|2025-07-09 18:50:39] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nsx/special_tokens_map.json
362
+
363
+ [WARNING|2025-07-09 18:50:39] logging.py:162 >> No metric eval_loss to plot.
364
+
365
+ [WARNING|2025-07-09 18:50:39] logging.py:162 >> No metric eval_accuracy to plot.
366
+
367
+ [INFO|2025-07-09 18:50:39] modelcard.py:449 >> Dropping the following result as it does not have all the necessary fields:
368
+ {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
369
+
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|EOT|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end▁of▁sentence|>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "100000": {
7
+ "content": "<|begin▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "100001": {
15
+ "content": "<|end▁of▁sentence|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "100002": {
23
+ "content": "ø",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "100003": {
31
+ "content": "ö",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "100004": {
39
+ "content": "ú",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "100005": {
47
+ "content": "ÿ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "100006": {
55
+ "content": "õ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "100007": {
63
+ "content": "÷",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "100008": {
71
+ "content": "û",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "100009": {
79
+ "content": "ý",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "100010": {
87
+ "content": "À",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "100011": {
95
+ "content": "ù",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "100012": {
103
+ "content": "Á",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "100013": {
111
+ "content": "þ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "100014": {
119
+ "content": "ü",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "100015": {
127
+ "content": "<|EOT|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": true
133
+ }
134
+ },
135
+ "bos_token": "<|begin▁of▁sentence|>",
136
+ "chat_template": "{% if not add_generation_prompt is defined %}\n{% set add_generation_prompt = false %}\n{% endif %}\n{%- set ns = namespace(found=false) -%}\n{%- for message in messages -%}\n {%- if message['role'] == 'system' -%}\n {%- set ns.found = true -%}\n {%- endif -%}\n{%- endfor -%}\n{{bos_token}}{%- if not ns.found -%}\n{{'You are an AI programming assistant, utilizing the Deepseek Coder model, developed by Deepseek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer\\n'}}\n{%- endif %}\n{%- for message in messages %}\n {%- if message['role'] == 'system' %}\n{{ message['content'] }}\n {%- else %}\n {%- if message['role'] == 'user' %}\n{{'### Instruction:\\n' + message['content'] + '\\n'}}\n {%- else %}\n{{'### Response:\\n' + message['content'] + '\\n<|EOT|>\\n'}}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{% if add_generation_prompt %}\n{{'### Response:'}}\n{% endif %}",
137
+ "clean_up_tokenization_spaces": false,
138
+ "eos_token": "<|EOT|>",
139
+ "extra_special_tokens": {},
140
+ "legacy": true,
141
+ "model_max_length": 4096,
142
+ "pad_token": "<|end▁of▁sentence|>",
143
+ "padding_side": "right",
144
+ "sp_model_kwargs": {},
145
+ "split_special_tokens": false,
146
+ "tokenizer_class": "LlamaTokenizer",
147
+ "unk_token": null,
148
+ "use_default_system_prompt": false
149
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9907578558225508,
3
+ "num_input_tokens_seen": 105381888,
4
+ "total_flos": 4.104162098269913e+18,
5
+ "train_loss": 0.8075656152483243,
6
+ "train_runtime": 10309.5741,
7
+ "train_samples_per_second": 2.518,
8
+ "train_steps_per_second": 0.006
9
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 67, "loss": 1.5801, "lr": 4.997252228714279e-05, "epoch": 0.014787430683918669, "percentage": 1.49, "elapsed_time": "0:02:41", "remaining_time": "2:57:48", "throughput": 9730.57, "total_tokens": 1572864}
2
+ {"current_steps": 2, "total_steps": 67, "loss": 1.3696, "lr": 4.9890149550547454e-05, "epoch": 0.029574861367837338, "percentage": 2.99, "elapsed_time": "0:05:14", "remaining_time": "2:50:27", "throughput": 9996.29, "total_tokens": 3145728}
3
+ {"current_steps": 3, "total_steps": 67, "loss": 1.2964, "lr": 4.9753062863366276e-05, "epoch": 0.04436229205175601, "percentage": 4.48, "elapsed_time": "0:07:48", "remaining_time": "2:46:24", "throughput": 10081.95, "total_tokens": 4718592}
4
+ {"current_steps": 4, "total_steps": 67, "loss": 1.2465, "lr": 4.95615635718894e-05, "epoch": 0.059149722735674676, "percentage": 5.97, "elapsed_time": "0:10:20", "remaining_time": "2:43:00", "throughput": 10131.27, "total_tokens": 6291456}
5
+ {"current_steps": 5, "total_steps": 67, "loss": 1.1284, "lr": 4.931607263312032e-05, "epoch": 0.07393715341959335, "percentage": 7.46, "elapsed_time": "0:12:53", "remaining_time": "2:39:54", "throughput": 10163.81, "total_tokens": 7864320}
6
+ {"current_steps": 6, "total_steps": 67, "loss": 1.0455, "lr": 4.9017129689421e-05, "epoch": 0.08872458410351201, "percentage": 8.96, "elapsed_time": "0:15:26", "remaining_time": "2:37:01", "throughput": 10183.83, "total_tokens": 9437184}
7
+ {"current_steps": 7, "total_steps": 67, "loss": 0.985, "lr": 4.8665391882260856e-05, "epoch": 0.10351201478743069, "percentage": 10.45, "elapsed_time": "0:17:59", "remaining_time": "2:34:12", "throughput": 10199.69, "total_tokens": 11010048}
8
+ {"current_steps": 8, "total_steps": 67, "loss": 0.957, "lr": 4.8261632407677174e-05, "epoch": 0.11829944547134935, "percentage": 11.94, "elapsed_time": "0:20:32", "remaining_time": "2:31:30", "throughput": 10208.81, "total_tokens": 12582912}
9
+ {"current_steps": 9, "total_steps": 67, "loss": 0.9121, "lr": 4.780673881662242e-05, "epoch": 0.133086876155268, "percentage": 13.43, "elapsed_time": "0:23:05", "remaining_time": "2:28:50", "throughput": 10215.43, "total_tokens": 14155776}
10
+ {"current_steps": 10, "total_steps": 67, "loss": 0.8857, "lr": 4.730171106393466e-05, "epoch": 0.1478743068391867, "percentage": 14.93, "elapsed_time": "0:25:38", "remaining_time": "2:26:12", "throughput": 10220.33, "total_tokens": 15728640}
11
+ {"current_steps": 11, "total_steps": 67, "loss": 0.8871, "lr": 4.674765931021976e-05, "epoch": 0.16266173752310537, "percentage": 16.42, "elapsed_time": "0:28:12", "remaining_time": "2:23:34", "throughput": 10224.6, "total_tokens": 17301504}
12
+ {"current_steps": 12, "total_steps": 67, "loss": 0.8668, "lr": 4.614580148147744e-05, "epoch": 0.17744916820702403, "percentage": 17.91, "elapsed_time": "0:30:45", "remaining_time": "2:20:57", "throughput": 10228.07, "total_tokens": 18874368}
13
+ {"current_steps": 13, "total_steps": 67, "loss": 0.8264, "lr": 4.5497460591835615e-05, "epoch": 0.1922365988909427, "percentage": 19.4, "elapsed_time": "0:33:18", "remaining_time": "2:18:21", "throughput": 10231.09, "total_tokens": 20447232}
14
+ {"current_steps": 14, "total_steps": 67, "loss": 0.8316, "lr": 4.480406183527823e-05, "epoch": 0.20702402957486138, "percentage": 20.9, "elapsed_time": "0:35:51", "remaining_time": "2:15:46", "throughput": 10233.42, "total_tokens": 22020096}
15
+ {"current_steps": 15, "total_steps": 67, "loss": 0.8214, "lr": 4.406712945275955e-05, "epoch": 0.22181146025878004, "percentage": 22.39, "elapsed_time": "0:38:24", "remaining_time": "2:13:10", "throughput": 10236.31, "total_tokens": 23592960}
16
+ {"current_steps": 16, "total_steps": 67, "loss": 0.8074, "lr": 4.328828338159173e-05, "epoch": 0.2365988909426987, "percentage": 23.88, "elapsed_time": "0:40:57", "remaining_time": "2:10:34", "throughput": 10238.37, "total_tokens": 25165824}
17
+ {"current_steps": 17, "total_steps": 67, "loss": 0.7947, "lr": 4.2469235694471043e-05, "epoch": 0.2513863216266174, "percentage": 25.37, "elapsed_time": "0:43:31", "remaining_time": "2:08:00", "throughput": 10239.79, "total_tokens": 26738688}
18
+ {"current_steps": 18, "total_steps": 67, "loss": 0.7868, "lr": 4.161178683597054e-05, "epoch": 0.266173752310536, "percentage": 26.87, "elapsed_time": "0:46:04", "remaining_time": "2:05:25", "throughput": 10240.87, "total_tokens": 28311552}
19
+ {"current_steps": 19, "total_steps": 67, "loss": 0.7657, "lr": 4.071782166477213e-05, "epoch": 0.2809611829944547, "percentage": 28.36, "elapsed_time": "0:48:37", "remaining_time": "2:02:51", "throughput": 10241.86, "total_tokens": 29884416}
20
+ {"current_steps": 20, "total_steps": 67, "loss": 0.7821, "lr": 3.978930531033807e-05, "epoch": 0.2957486136783734, "percentage": 29.85, "elapsed_time": "0:51:11", "remaining_time": "2:00:17", "throughput": 10242.44, "total_tokens": 31457280}
21
+ {"current_steps": 21, "total_steps": 67, "loss": 0.764, "lr": 3.882827885312999e-05, "epoch": 0.31053604436229204, "percentage": 31.34, "elapsed_time": "0:53:44", "remaining_time": "1:57:43", "throughput": 10242.8, "total_tokens": 33030144}
22
+ {"current_steps": 22, "total_steps": 67, "loss": 0.7781, "lr": 3.783685483787105e-05, "epoch": 0.32532347504621073, "percentage": 32.84, "elapsed_time": "0:56:18", "remaining_time": "1:55:09", "throughput": 10243.48, "total_tokens": 34603008}
23
+ {"current_steps": 23, "total_steps": 67, "loss": 0.7663, "lr": 3.681721262971413e-05, "epoch": 0.34011090573012936, "percentage": 34.33, "elapsed_time": "0:58:51", "remaining_time": "1:52:35", "throughput": 10244.34, "total_tokens": 36175872}
24
+ {"current_steps": 24, "total_steps": 67, "loss": 0.7303, "lr": 3.5771593623524265e-05, "epoch": 0.35489833641404805, "percentage": 35.82, "elapsed_time": "1:01:24", "remaining_time": "1:50:01", "throughput": 10245.23, "total_tokens": 37748736}
25
+ {"current_steps": 25, "total_steps": 67, "loss": 0.7626, "lr": 3.4702296316806244e-05, "epoch": 0.36968576709796674, "percentage": 37.31, "elapsed_time": "1:03:57", "remaining_time": "1:47:27", "throughput": 10245.49, "total_tokens": 39321600}
26
+ {"current_steps": 26, "total_steps": 67, "loss": 0.7709, "lr": 3.361167125710832e-05, "epoch": 0.3844731977818854, "percentage": 38.81, "elapsed_time": "1:06:31", "remaining_time": "1:44:53", "throughput": 10246.02, "total_tokens": 40894464}
27
+ {"current_steps": 27, "total_steps": 67, "loss": 0.7638, "lr": 3.2502115875008524e-05, "epoch": 0.39926062846580407, "percentage": 40.3, "elapsed_time": "1:09:04", "remaining_time": "1:42:20", "throughput": 10246.34, "total_tokens": 42467328}
28
+ {"current_steps": 28, "total_steps": 67, "loss": 0.7561, "lr": 3.1376069214041913e-05, "epoch": 0.41404805914972276, "percentage": 41.79, "elapsed_time": "1:11:38", "remaining_time": "1:39:46", "throughput": 10246.39, "total_tokens": 44040192}
29
+ {"current_steps": 29, "total_steps": 67, "loss": 0.7372, "lr": 3.0236006569153617e-05, "epoch": 0.4288354898336414, "percentage": 43.28, "elapsed_time": "1:14:11", "remaining_time": "1:37:12", "throughput": 10246.9, "total_tokens": 45613056}
30
+ {"current_steps": 30, "total_steps": 67, "loss": 0.7281, "lr": 2.9084434045463255e-05, "epoch": 0.4436229205175601, "percentage": 44.78, "elapsed_time": "1:16:45", "remaining_time": "1:34:39", "throughput": 10246.62, "total_tokens": 47185920}
31
+ {"current_steps": 31, "total_steps": 67, "loss": 0.7601, "lr": 2.792388304930207e-05, "epoch": 0.4584103512014787, "percentage": 46.27, "elapsed_time": "1:19:18", "remaining_time": "1:32:06", "throughput": 10246.53, "total_tokens": 48758784}
32
+ {"current_steps": 32, "total_steps": 67, "loss": 0.7296, "lr": 2.6756904723632324e-05, "epoch": 0.4731977818853974, "percentage": 47.76, "elapsed_time": "1:21:51", "remaining_time": "1:29:32", "throughput": 10246.68, "total_tokens": 50331648}
33
+ {"current_steps": 33, "total_steps": 67, "loss": 0.741, "lr": 2.5586064340081516e-05, "epoch": 0.4879852125693161, "percentage": 49.25, "elapsed_time": "1:24:25", "remaining_time": "1:26:59", "throughput": 10246.53, "total_tokens": 51904512}
34
+ {"current_steps": 34, "total_steps": 67, "loss": 0.7251, "lr": 2.441393565991849e-05, "epoch": 0.5027726432532348, "percentage": 50.75, "elapsed_time": "1:26:59", "remaining_time": "1:24:25", "throughput": 10246.23, "total_tokens": 53477376}
35
+ {"current_steps": 35, "total_steps": 67, "loss": 0.7385, "lr": 2.3243095276367685e-05, "epoch": 0.5175600739371534, "percentage": 52.24, "elapsed_time": "1:29:32", "remaining_time": "1:21:52", "throughput": 10246.0, "total_tokens": 55050240}
36
+ {"current_steps": 36, "total_steps": 67, "loss": 0.746, "lr": 2.207611695069794e-05, "epoch": 0.532347504621072, "percentage": 53.73, "elapsed_time": "1:32:06", "remaining_time": "1:19:18", "throughput": 10245.76, "total_tokens": 56623104}
37
+ {"current_steps": 37, "total_steps": 67, "loss": 0.7315, "lr": 2.0915565954536744e-05, "epoch": 0.5471349353049908, "percentage": 55.22, "elapsed_time": "1:34:40", "remaining_time": "1:16:45", "throughput": 10245.41, "total_tokens": 58195968}
38
+ {"current_steps": 38, "total_steps": 67, "loss": 0.7267, "lr": 1.9763993430846395e-05, "epoch": 0.5619223659889094, "percentage": 56.72, "elapsed_time": "1:37:13", "remaining_time": "1:14:12", "throughput": 10245.47, "total_tokens": 59768832}
39
+ {"current_steps": 39, "total_steps": 67, "loss": 0.7443, "lr": 1.8623930785958092e-05, "epoch": 0.5767097966728281, "percentage": 58.21, "elapsed_time": "1:39:46", "remaining_time": "1:11:38", "throughput": 10246.13, "total_tokens": 61341696}
40
+ {"current_steps": 40, "total_steps": 67, "loss": 0.7163, "lr": 1.749788412499149e-05, "epoch": 0.5914972273567468, "percentage": 59.7, "elapsed_time": "1:42:19", "remaining_time": "1:09:04", "throughput": 10246.67, "total_tokens": 62914560}
41
+ {"current_steps": 41, "total_steps": 67, "loss": 0.73, "lr": 1.638832874289168e-05, "epoch": 0.6062846580406654, "percentage": 61.19, "elapsed_time": "1:44:53", "remaining_time": "1:06:31", "throughput": 10246.53, "total_tokens": 64487424}
42
+ {"current_steps": 42, "total_steps": 67, "loss": 0.723, "lr": 1.5297703683193752e-05, "epoch": 0.6210720887245841, "percentage": 62.69, "elapsed_time": "1:47:27", "remaining_time": "1:03:57", "throughput": 10246.38, "total_tokens": 66060288}
43
+ {"current_steps": 43, "total_steps": 67, "loss": 0.7176, "lr": 1.4228406376475742e-05, "epoch": 0.6358595194085028, "percentage": 64.18, "elapsed_time": "1:50:00", "remaining_time": "1:01:24", "throughput": 10246.13, "total_tokens": 67633152}
44
+ {"current_steps": 44, "total_steps": 67, "loss": 0.7066, "lr": 1.3182787370285865e-05, "epoch": 0.6506469500924215, "percentage": 65.67, "elapsed_time": "1:52:34", "remaining_time": "0:58:50", "throughput": 10245.31, "total_tokens": 69206016}
45
+ {"current_steps": 45, "total_steps": 67, "loss": 0.7244, "lr": 1.2163145162128947e-05, "epoch": 0.6654343807763401, "percentage": 67.16, "elapsed_time": "1:55:08", "remaining_time": "0:56:17", "throughput": 10245.33, "total_tokens": 70778880}
46
+ {"current_steps": 46, "total_steps": 67, "loss": 0.7349, "lr": 1.1171721146870015e-05, "epoch": 0.6802218114602587, "percentage": 68.66, "elapsed_time": "1:57:42", "remaining_time": "0:53:43", "throughput": 10245.14, "total_tokens": 72351744}
47
+ {"current_steps": 47, "total_steps": 67, "loss": 0.7487, "lr": 1.021069468966194e-05, "epoch": 0.6950092421441775, "percentage": 70.15, "elapsed_time": "2:00:15", "remaining_time": "0:51:10", "throughput": 10245.15, "total_tokens": 73924608}
48
+ {"current_steps": 48, "total_steps": 67, "loss": 0.7381, "lr": 9.282178335227884e-06, "epoch": 0.7097966728280961, "percentage": 71.64, "elapsed_time": "2:02:49", "remaining_time": "0:48:36", "throughput": 10245.27, "total_tokens": 75497472}
49
+ {"current_steps": 49, "total_steps": 67, "loss": 0.7262, "lr": 8.38821316402946e-06, "epoch": 0.7245841035120147, "percentage": 73.13, "elapsed_time": "2:05:22", "remaining_time": "0:46:03", "throughput": 10245.11, "total_tokens": 77070336}
50
+ {"current_steps": 50, "total_steps": 67, "loss": 0.7473, "lr": 7.530764305528959e-06, "epoch": 0.7393715341959335, "percentage": 74.63, "elapsed_time": "2:07:56", "remaining_time": "0:43:30", "throughput": 10244.43, "total_tokens": 78643200}
51
+ {"current_steps": 51, "total_steps": 67, "loss": 0.6998, "lr": 6.711716618408281e-06, "epoch": 0.7541589648798521, "percentage": 76.12, "elapsed_time": "2:10:30", "remaining_time": "0:40:56", "throughput": 10244.28, "total_tokens": 80216064}
52
+ {"current_steps": 52, "total_steps": 67, "loss": 0.7218, "lr": 5.932870547240454e-06, "epoch": 0.7689463955637708, "percentage": 77.61, "elapsed_time": "2:13:03", "remaining_time": "0:38:23", "throughput": 10244.28, "total_tokens": 81788928}
53
+ {"current_steps": 53, "total_steps": 67, "loss": 0.7314, "lr": 5.1959381647217666e-06, "epoch": 0.7837338262476895, "percentage": 79.1, "elapsed_time": "2:15:37", "remaining_time": "0:35:49", "throughput": 10244.27, "total_tokens": 83361792}
54
+ {"current_steps": 54, "total_steps": 67, "loss": 0.7028, "lr": 4.502539408164386e-06, "epoch": 0.7985212569316081, "percentage": 80.6, "elapsed_time": "2:18:10", "remaining_time": "0:33:15", "throughput": 10244.46, "total_tokens": 84934656}
55
+ {"current_steps": 55, "total_steps": 67, "loss": 0.7084, "lr": 3.8541985185225645e-06, "epoch": 0.8133086876155268, "percentage": 82.09, "elapsed_time": "2:20:44", "remaining_time": "0:30:42", "throughput": 10244.41, "total_tokens": 86507520}
56
+ {"current_steps": 56, "total_steps": 67, "loss": 0.7223, "lr": 3.252340689780245e-06, "epoch": 0.8280961182994455, "percentage": 83.58, "elapsed_time": "2:23:17", "remaining_time": "0:28:08", "throughput": 10244.78, "total_tokens": 88080384}
57
+ {"current_steps": 57, "total_steps": 67, "loss": 0.7195, "lr": 2.6982889360653377e-06, "epoch": 0.8428835489833642, "percentage": 85.07, "elapsed_time": "2:25:51", "remaining_time": "0:25:35", "throughput": 10244.84, "total_tokens": 89653248}
58
+ {"current_steps": 58, "total_steps": 67, "loss": 0.7431, "lr": 2.1932611833775846e-06, "epoch": 0.8576709796672828, "percentage": 86.57, "elapsed_time": "2:28:24", "remaining_time": "0:23:01", "throughput": 10244.76, "total_tokens": 91226112}
59
+ {"current_steps": 59, "total_steps": 67, "loss": 0.732, "lr": 1.738367592322837e-06, "epoch": 0.8724584103512015, "percentage": 88.06, "elapsed_time": "2:30:57", "remaining_time": "0:20:28", "throughput": 10245.04, "total_tokens": 92798976}
60
+ {"current_steps": 60, "total_steps": 67, "loss": 0.7302, "lr": 1.3346081177391472e-06, "epoch": 0.8872458410351202, "percentage": 89.55, "elapsed_time": "2:33:31", "remaining_time": "0:17:54", "throughput": 10245.15, "total_tokens": 94371840}
61
+ {"current_steps": 61, "total_steps": 67, "loss": 0.7197, "lr": 9.828703105789983e-07, "epoch": 0.9020332717190388, "percentage": 91.04, "elapsed_time": "2:36:05", "remaining_time": "0:15:21", "throughput": 10244.99, "total_tokens": 95944704}
62
+ {"current_steps": 62, "total_steps": 67, "loss": 0.7203, "lr": 6.839273668796747e-07, "epoch": 0.9168207024029574, "percentage": 92.54, "elapsed_time": "2:38:38", "remaining_time": "0:12:47", "throughput": 10244.88, "total_tokens": 97517568}
63
+ {"current_steps": 63, "total_steps": 67, "loss": 0.7474, "lr": 4.3843642811059737e-07, "epoch": 0.9316081330868762, "percentage": 94.03, "elapsed_time": "2:41:12", "remaining_time": "0:10:14", "throughput": 10244.81, "total_tokens": 99090432}
64
+ {"current_steps": 64, "total_steps": 67, "loss": 0.7403, "lr": 2.4693713663372644e-07, "epoch": 0.9463955637707948, "percentage": 95.52, "elapsed_time": "2:43:45", "remaining_time": "0:07:40", "throughput": 10244.76, "total_tokens": 100663296}
65
+ {"current_steps": 65, "total_steps": 67, "loss": 0.7327, "lr": 1.0985044945254764e-07, "epoch": 0.9611829944547134, "percentage": 97.01, "elapsed_time": "2:46:19", "remaining_time": "0:05:07", "throughput": 10244.72, "total_tokens": 102236160}
66
+ {"current_steps": 66, "total_steps": 67, "loss": 0.725, "lr": 2.7477712857215677e-08, "epoch": 0.9759704251386322, "percentage": 98.51, "elapsed_time": "2:48:53", "remaining_time": "0:02:33", "throughput": 10244.49, "total_tokens": 103809024}
67
+ {"current_steps": 67, "total_steps": 67, "loss": 0.7209, "lr": 0.0, "epoch": 0.9907578558225508, "percentage": 100.0, "elapsed_time": "2:51:26", "remaining_time": "0:00:00", "throughput": 10244.41, "total_tokens": 105381888}
68
+ {"current_steps": 67, "total_steps": 67, "epoch": 0.9907578558225508, "percentage": 100.0, "elapsed_time": "2:51:48", "remaining_time": "0:00:00", "throughput": 10222.76, "total_tokens": 105381888}
trainer_state.json ADDED
@@ -0,0 +1,579 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9907578558225508,
5
+ "eval_steps": 500,
6
+ "global_step": 67,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.014787430683918669,
13
+ "grad_norm": 2.2905805110931396,
14
+ "learning_rate": 4.997252228714279e-05,
15
+ "loss": 1.5801,
16
+ "num_input_tokens_seen": 1572864,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.029574861367837338,
21
+ "grad_norm": 1.8597325086593628,
22
+ "learning_rate": 4.9890149550547454e-05,
23
+ "loss": 1.3696,
24
+ "num_input_tokens_seen": 3145728,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.04436229205175601,
29
+ "grad_norm": 1.7161543369293213,
30
+ "learning_rate": 4.9753062863366276e-05,
31
+ "loss": 1.2964,
32
+ "num_input_tokens_seen": 4718592,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.059149722735674676,
37
+ "grad_norm": 1.556989073753357,
38
+ "learning_rate": 4.95615635718894e-05,
39
+ "loss": 1.2465,
40
+ "num_input_tokens_seen": 6291456,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.07393715341959335,
45
+ "grad_norm": 1.2705891132354736,
46
+ "learning_rate": 4.931607263312032e-05,
47
+ "loss": 1.1284,
48
+ "num_input_tokens_seen": 7864320,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.08872458410351201,
53
+ "grad_norm": 1.1708149909973145,
54
+ "learning_rate": 4.9017129689421e-05,
55
+ "loss": 1.0455,
56
+ "num_input_tokens_seen": 9437184,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.10351201478743069,
61
+ "grad_norm": 1.0333069562911987,
62
+ "learning_rate": 4.8665391882260856e-05,
63
+ "loss": 0.985,
64
+ "num_input_tokens_seen": 11010048,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.11829944547134935,
69
+ "grad_norm": 1.0009125471115112,
70
+ "learning_rate": 4.8261632407677174e-05,
71
+ "loss": 0.957,
72
+ "num_input_tokens_seen": 12582912,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.133086876155268,
77
+ "grad_norm": 0.7598341107368469,
78
+ "learning_rate": 4.780673881662242e-05,
79
+ "loss": 0.9121,
80
+ "num_input_tokens_seen": 14155776,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.1478743068391867,
85
+ "grad_norm": 0.366968035697937,
86
+ "learning_rate": 4.730171106393466e-05,
87
+ "loss": 0.8857,
88
+ "num_input_tokens_seen": 15728640,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.16266173752310537,
93
+ "grad_norm": 0.2760382890701294,
94
+ "learning_rate": 4.674765931021976e-05,
95
+ "loss": 0.8871,
96
+ "num_input_tokens_seen": 17301504,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.17744916820702403,
101
+ "grad_norm": 0.23743785917758942,
102
+ "learning_rate": 4.614580148147744e-05,
103
+ "loss": 0.8668,
104
+ "num_input_tokens_seen": 18874368,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.1922365988909427,
109
+ "grad_norm": 0.21216906607151031,
110
+ "learning_rate": 4.5497460591835615e-05,
111
+ "loss": 0.8264,
112
+ "num_input_tokens_seen": 20447232,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.20702402957486138,
117
+ "grad_norm": 0.202525332570076,
118
+ "learning_rate": 4.480406183527823e-05,
119
+ "loss": 0.8316,
120
+ "num_input_tokens_seen": 22020096,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.22181146025878004,
125
+ "grad_norm": 0.1785624921321869,
126
+ "learning_rate": 4.406712945275955e-05,
127
+ "loss": 0.8214,
128
+ "num_input_tokens_seen": 23592960,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.2365988909426987,
133
+ "grad_norm": 0.17254720628261566,
134
+ "learning_rate": 4.328828338159173e-05,
135
+ "loss": 0.8074,
136
+ "num_input_tokens_seen": 25165824,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.2513863216266174,
141
+ "grad_norm": 0.15905120968818665,
142
+ "learning_rate": 4.2469235694471043e-05,
143
+ "loss": 0.7947,
144
+ "num_input_tokens_seen": 26738688,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.266173752310536,
149
+ "grad_norm": 0.13924936950206757,
150
+ "learning_rate": 4.161178683597054e-05,
151
+ "loss": 0.7868,
152
+ "num_input_tokens_seen": 28311552,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.2809611829944547,
157
+ "grad_norm": 0.12500160932540894,
158
+ "learning_rate": 4.071782166477213e-05,
159
+ "loss": 0.7657,
160
+ "num_input_tokens_seen": 29884416,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.2957486136783734,
165
+ "grad_norm": 0.11662258207798004,
166
+ "learning_rate": 3.978930531033807e-05,
167
+ "loss": 0.7821,
168
+ "num_input_tokens_seen": 31457280,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.31053604436229204,
173
+ "grad_norm": 0.10671637207269669,
174
+ "learning_rate": 3.882827885312999e-05,
175
+ "loss": 0.764,
176
+ "num_input_tokens_seen": 33030144,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.32532347504621073,
181
+ "grad_norm": 0.10863461345434189,
182
+ "learning_rate": 3.783685483787105e-05,
183
+ "loss": 0.7781,
184
+ "num_input_tokens_seen": 34603008,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.34011090573012936,
189
+ "grad_norm": 0.09509966522455215,
190
+ "learning_rate": 3.681721262971413e-05,
191
+ "loss": 0.7663,
192
+ "num_input_tokens_seen": 36175872,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.35489833641404805,
197
+ "grad_norm": 0.08742663264274597,
198
+ "learning_rate": 3.5771593623524265e-05,
199
+ "loss": 0.7303,
200
+ "num_input_tokens_seen": 37748736,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.36968576709796674,
205
+ "grad_norm": 0.09325291961431503,
206
+ "learning_rate": 3.4702296316806244e-05,
207
+ "loss": 0.7626,
208
+ "num_input_tokens_seen": 39321600,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.3844731977818854,
213
+ "grad_norm": 0.08703341335058212,
214
+ "learning_rate": 3.361167125710832e-05,
215
+ "loss": 0.7709,
216
+ "num_input_tokens_seen": 40894464,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.39926062846580407,
221
+ "grad_norm": 0.09138187021017075,
222
+ "learning_rate": 3.2502115875008524e-05,
223
+ "loss": 0.7638,
224
+ "num_input_tokens_seen": 42467328,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.41404805914972276,
229
+ "grad_norm": 0.08183719217777252,
230
+ "learning_rate": 3.1376069214041913e-05,
231
+ "loss": 0.7561,
232
+ "num_input_tokens_seen": 44040192,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.4288354898336414,
237
+ "grad_norm": 0.08267659693956375,
238
+ "learning_rate": 3.0236006569153617e-05,
239
+ "loss": 0.7372,
240
+ "num_input_tokens_seen": 45613056,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.4436229205175601,
245
+ "grad_norm": 0.07969928532838821,
246
+ "learning_rate": 2.9084434045463255e-05,
247
+ "loss": 0.7281,
248
+ "num_input_tokens_seen": 47185920,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.4584103512014787,
253
+ "grad_norm": 0.07706066220998764,
254
+ "learning_rate": 2.792388304930207e-05,
255
+ "loss": 0.7601,
256
+ "num_input_tokens_seen": 48758784,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.4731977818853974,
261
+ "grad_norm": 0.07695123553276062,
262
+ "learning_rate": 2.6756904723632324e-05,
263
+ "loss": 0.7296,
264
+ "num_input_tokens_seen": 50331648,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.4879852125693161,
269
+ "grad_norm": 0.07787525653839111,
270
+ "learning_rate": 2.5586064340081516e-05,
271
+ "loss": 0.741,
272
+ "num_input_tokens_seen": 51904512,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.5027726432532348,
277
+ "grad_norm": 0.08225582540035248,
278
+ "learning_rate": 2.441393565991849e-05,
279
+ "loss": 0.7251,
280
+ "num_input_tokens_seen": 53477376,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.5175600739371534,
285
+ "grad_norm": 0.0731961578130722,
286
+ "learning_rate": 2.3243095276367685e-05,
287
+ "loss": 0.7385,
288
+ "num_input_tokens_seen": 55050240,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.532347504621072,
293
+ "grad_norm": 0.08208758383989334,
294
+ "learning_rate": 2.207611695069794e-05,
295
+ "loss": 0.746,
296
+ "num_input_tokens_seen": 56623104,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.5471349353049908,
301
+ "grad_norm": 0.07385499030351639,
302
+ "learning_rate": 2.0915565954536744e-05,
303
+ "loss": 0.7315,
304
+ "num_input_tokens_seen": 58195968,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.5619223659889094,
309
+ "grad_norm": 0.06937970221042633,
310
+ "learning_rate": 1.9763993430846395e-05,
311
+ "loss": 0.7267,
312
+ "num_input_tokens_seen": 59768832,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 0.5767097966728281,
317
+ "grad_norm": 0.0702456384897232,
318
+ "learning_rate": 1.8623930785958092e-05,
319
+ "loss": 0.7443,
320
+ "num_input_tokens_seen": 61341696,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 0.5914972273567468,
325
+ "grad_norm": 0.0659838542342186,
326
+ "learning_rate": 1.749788412499149e-05,
327
+ "loss": 0.7163,
328
+ "num_input_tokens_seen": 62914560,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.6062846580406654,
333
+ "grad_norm": 0.07357968389987946,
334
+ "learning_rate": 1.638832874289168e-05,
335
+ "loss": 0.73,
336
+ "num_input_tokens_seen": 64487424,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 0.6210720887245841,
341
+ "grad_norm": 0.0689447820186615,
342
+ "learning_rate": 1.5297703683193752e-05,
343
+ "loss": 0.723,
344
+ "num_input_tokens_seen": 66060288,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 0.6358595194085028,
349
+ "grad_norm": 0.0671798512339592,
350
+ "learning_rate": 1.4228406376475742e-05,
351
+ "loss": 0.7176,
352
+ "num_input_tokens_seen": 67633152,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 0.6506469500924215,
357
+ "grad_norm": 0.06556376069784164,
358
+ "learning_rate": 1.3182787370285865e-05,
359
+ "loss": 0.7066,
360
+ "num_input_tokens_seen": 69206016,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.6654343807763401,
365
+ "grad_norm": 0.07168299704790115,
366
+ "learning_rate": 1.2163145162128947e-05,
367
+ "loss": 0.7244,
368
+ "num_input_tokens_seen": 70778880,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 0.6802218114602587,
373
+ "grad_norm": 0.06598961353302002,
374
+ "learning_rate": 1.1171721146870015e-05,
375
+ "loss": 0.7349,
376
+ "num_input_tokens_seen": 72351744,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 0.6950092421441775,
381
+ "grad_norm": 0.06602618843317032,
382
+ "learning_rate": 1.021069468966194e-05,
383
+ "loss": 0.7487,
384
+ "num_input_tokens_seen": 73924608,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 0.7097966728280961,
389
+ "grad_norm": 0.0713997408747673,
390
+ "learning_rate": 9.282178335227884e-06,
391
+ "loss": 0.7381,
392
+ "num_input_tokens_seen": 75497472,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.7245841035120147,
397
+ "grad_norm": 0.06555724889039993,
398
+ "learning_rate": 8.38821316402946e-06,
399
+ "loss": 0.7262,
400
+ "num_input_tokens_seen": 77070336,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 0.7393715341959335,
405
+ "grad_norm": 0.06813663244247437,
406
+ "learning_rate": 7.530764305528959e-06,
407
+ "loss": 0.7473,
408
+ "num_input_tokens_seen": 78643200,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 0.7541589648798521,
413
+ "grad_norm": 0.06930514425039291,
414
+ "learning_rate": 6.711716618408281e-06,
415
+ "loss": 0.6998,
416
+ "num_input_tokens_seen": 80216064,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 0.7689463955637708,
421
+ "grad_norm": 0.06492163240909576,
422
+ "learning_rate": 5.932870547240454e-06,
423
+ "loss": 0.7218,
424
+ "num_input_tokens_seen": 81788928,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.7837338262476895,
429
+ "grad_norm": 0.07155918329954147,
430
+ "learning_rate": 5.1959381647217666e-06,
431
+ "loss": 0.7314,
432
+ "num_input_tokens_seen": 83361792,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 0.7985212569316081,
437
+ "grad_norm": 0.06532897800207138,
438
+ "learning_rate": 4.502539408164386e-06,
439
+ "loss": 0.7028,
440
+ "num_input_tokens_seen": 84934656,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 0.8133086876155268,
445
+ "grad_norm": 0.06727246940135956,
446
+ "learning_rate": 3.8541985185225645e-06,
447
+ "loss": 0.7084,
448
+ "num_input_tokens_seen": 86507520,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 0.8280961182994455,
453
+ "grad_norm": 0.06698304414749146,
454
+ "learning_rate": 3.252340689780245e-06,
455
+ "loss": 0.7223,
456
+ "num_input_tokens_seen": 88080384,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.8428835489833642,
461
+ "grad_norm": 0.06450291723012924,
462
+ "learning_rate": 2.6982889360653377e-06,
463
+ "loss": 0.7195,
464
+ "num_input_tokens_seen": 89653248,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 0.8576709796672828,
469
+ "grad_norm": 0.06992805004119873,
470
+ "learning_rate": 2.1932611833775846e-06,
471
+ "loss": 0.7431,
472
+ "num_input_tokens_seen": 91226112,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 0.8724584103512015,
477
+ "grad_norm": 0.06958083808422089,
478
+ "learning_rate": 1.738367592322837e-06,
479
+ "loss": 0.732,
480
+ "num_input_tokens_seen": 92798976,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 0.8872458410351202,
485
+ "grad_norm": 0.0694640502333641,
486
+ "learning_rate": 1.3346081177391472e-06,
487
+ "loss": 0.7302,
488
+ "num_input_tokens_seen": 94371840,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.9020332717190388,
493
+ "grad_norm": 0.07005713880062103,
494
+ "learning_rate": 9.828703105789983e-07,
495
+ "loss": 0.7197,
496
+ "num_input_tokens_seen": 95944704,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 0.9168207024029574,
501
+ "grad_norm": 0.07030840963125229,
502
+ "learning_rate": 6.839273668796747e-07,
503
+ "loss": 0.7203,
504
+ "num_input_tokens_seen": 97517568,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 0.9316081330868762,
509
+ "grad_norm": 0.0708225816488266,
510
+ "learning_rate": 4.3843642811059737e-07,
511
+ "loss": 0.7474,
512
+ "num_input_tokens_seen": 99090432,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 0.9463955637707948,
517
+ "grad_norm": 0.0676749050617218,
518
+ "learning_rate": 2.4693713663372644e-07,
519
+ "loss": 0.7403,
520
+ "num_input_tokens_seen": 100663296,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 0.9611829944547134,
525
+ "grad_norm": 0.06782912462949753,
526
+ "learning_rate": 1.0985044945254764e-07,
527
+ "loss": 0.7327,
528
+ "num_input_tokens_seen": 102236160,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 0.9759704251386322,
533
+ "grad_norm": 0.06357243657112122,
534
+ "learning_rate": 2.7477712857215677e-08,
535
+ "loss": 0.725,
536
+ "num_input_tokens_seen": 103809024,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 0.9907578558225508,
541
+ "grad_norm": 0.07199209183454514,
542
+ "learning_rate": 0.0,
543
+ "loss": 0.7209,
544
+ "num_input_tokens_seen": 105381888,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 0.9907578558225508,
549
+ "num_input_tokens_seen": 105381888,
550
+ "step": 67,
551
+ "total_flos": 4.104162098269913e+18,
552
+ "train_loss": 0.8075656152483243,
553
+ "train_runtime": 10309.5741,
554
+ "train_samples_per_second": 2.518,
555
+ "train_steps_per_second": 0.006
556
+ }
557
+ ],
558
+ "logging_steps": 1,
559
+ "max_steps": 67,
560
+ "num_input_tokens_seen": 105381888,
561
+ "num_train_epochs": 1,
562
+ "save_steps": 1000,
563
+ "stateful_callbacks": {
564
+ "TrainerControl": {
565
+ "args": {
566
+ "should_epoch_stop": false,
567
+ "should_evaluate": false,
568
+ "should_log": false,
569
+ "should_save": true,
570
+ "should_training_stop": true
571
+ },
572
+ "attributes": {}
573
+ }
574
+ },
575
+ "total_flos": 4.104162098269913e+18,
576
+ "train_batch_size": 16,
577
+ "trial_name": null,
578
+ "trial_params": null
579
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3744866dbbc6f131cffa9f029f7c79843f64cdc0b6148cbf4456291d5471e5e3
3
+ size 5688
training_args.yaml ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apollo_rank: 256
2
+ apollo_scale: 1
3
+ apollo_target: all
4
+ apollo_update_interval: 200
5
+ bf16: true
6
+ cutoff_len: 4096
7
+ dataset: codes_nsx_under8
8
+ dataset_dir: data
9
+ ddp_timeout: 180000000
10
+ do_train: true
11
+ enable_liger_kernel: true
12
+ finetuning_type: freeze
13
+ flash_attn: auto
14
+ freeze_trainable_layers: 2
15
+ freeze_trainable_modules: all
16
+ gradient_accumulation_steps: 8
17
+ include_num_input_tokens_seen: true
18
+ learning_rate: 5.0e-05
19
+ logging_steps: 1
20
+ lr_scheduler_type: cosine
21
+ max_grad_norm: 1.0
22
+ max_samples: 50000000
23
+ model_name_or_path: deepseek-ai/deepseek-coder-7b-instruct-v1.5
24
+ neat_packing: true
25
+ num_train_epochs: 1.0
26
+ output_dir: saves/DeepSeek-Coder-7B-Instruct/freeze/deepseek_under8_nsx
27
+ packing: true
28
+ per_device_train_batch_size: 16
29
+ plot_loss: true
30
+ preprocessing_num_workers: 16
31
+ report_to: none
32
+ rope_scaling: llama3
33
+ save_steps: 1000
34
+ stage: sft
35
+ template: deepseekcoder
36
+ trust_remote_code: true
37
+ use_apollo: true
38
+ use_llama_pro: true
39
+ warmup_steps: 0
training_loss.png ADDED