|
"""Save CTransPath model in TorchScript format. |
|
|
|
Adapted from https://github.com/Xiyue-Wang/TransPath |
|
|
|
Licensed GPL 3.0. |
|
""" |
|
|
|
import sys |
|
|
|
|
|
sys.path.append("timm-0.5.4/") |
|
|
|
import timm |
|
from timm.models.layers.helpers import to_2tuple |
|
import torch |
|
import torch.nn as nn |
|
|
|
assert timm.__version__ == "0.5.4" |
|
|
|
|
|
class ConvStem(nn.Module): |
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=4, |
|
in_chans=3, |
|
embed_dim=768, |
|
norm_layer=None, |
|
flatten=True, |
|
): |
|
super().__init__() |
|
|
|
assert patch_size == 4 |
|
assert embed_dim % 8 == 0 |
|
|
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] |
|
self.flatten = flatten |
|
|
|
stem = [] |
|
input_dim, output_dim = 3, embed_dim // 8 |
|
for l in range(2): |
|
stem.append( |
|
nn.Conv2d( |
|
input_dim, |
|
output_dim, |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
bias=False, |
|
) |
|
) |
|
stem.append(nn.BatchNorm2d(output_dim)) |
|
stem.append(nn.ReLU(inplace=True)) |
|
input_dim = output_dim |
|
output_dim *= 2 |
|
stem.append(nn.Conv2d(input_dim, embed_dim, kernel_size=1)) |
|
self.proj = nn.Sequential(*stem) |
|
|
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
assert ( |
|
H == self.img_size[0] and W == self.img_size[1] |
|
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
x = self.proj(x) |
|
if self.flatten: |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
def ctranspath(): |
|
model = timm.create_model( |
|
"swin_tiny_patch4_window7_224", embed_layer=ConvStem, pretrained=False |
|
) |
|
return model |
|
|
|
|
|
model = ctranspath() |
|
model.head = torch.nn.Identity() |
|
td = torch.load("ctranspath.pth") |
|
model.load_state_dict(td["model"], strict=True) |
|
|
|
jitted = torch.jit.script(model) |
|
torch.jit.save(jitted, "torchscript_model.pt") |
|
|
|
torch.onnx.export( |
|
model, |
|
args=torch.ones(1, 3, 224, 224), |
|
f="model.onnx", |
|
input_names=["image"], |
|
output_names=["embedding"], |
|
dynamic_axes={ |
|
"image": {0: "batch_size"}, |
|
"embedding": {0: "batch_size"}, |
|
}, |
|
) |
|
|