kaczmarj commited on
Commit
7901ec4
·
1 Parent(s): 299b445

Create export_to_torchscript.py

Browse files
Files changed (1) hide show
  1. export_to_torchscript.py +93 -0
export_to_torchscript.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Save CTransPath model in TorchScript format.
2
+
3
+ Adapted from https://github.com/Xiyue-Wang/TransPath
4
+
5
+ Licensed GPL 3.0.
6
+ """
7
+
8
+ import sys
9
+
10
+ # Use the TIMM library with modifications by the CTransPath authors.
11
+ sys.path.append("timm-0.5.4/")
12
+
13
+ import timm
14
+ from timm.models.layers.helpers import to_2tuple
15
+ import torch
16
+ import torch.nn as nn
17
+
18
+ assert timm.__version__ == "0.5.4"
19
+
20
+
21
+ class ConvStem(nn.Module):
22
+ def __init__(
23
+ self,
24
+ img_size=224,
25
+ patch_size=4,
26
+ in_chans=3,
27
+ embed_dim=768,
28
+ norm_layer=None,
29
+ flatten=True,
30
+ ):
31
+ super().__init__()
32
+
33
+ assert patch_size == 4
34
+ assert embed_dim % 8 == 0
35
+
36
+ img_size = to_2tuple(img_size)
37
+ patch_size = to_2tuple(patch_size)
38
+ self.img_size = img_size
39
+ self.patch_size = patch_size
40
+ self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
41
+ self.num_patches = self.grid_size[0] * self.grid_size[1]
42
+ self.flatten = flatten
43
+
44
+ stem = []
45
+ input_dim, output_dim = 3, embed_dim // 8
46
+ for l in range(2):
47
+ stem.append(
48
+ nn.Conv2d(
49
+ input_dim,
50
+ output_dim,
51
+ kernel_size=3,
52
+ stride=2,
53
+ padding=1,
54
+ bias=False,
55
+ )
56
+ )
57
+ stem.append(nn.BatchNorm2d(output_dim))
58
+ stem.append(nn.ReLU(inplace=True))
59
+ input_dim = output_dim
60
+ output_dim *= 2
61
+ stem.append(nn.Conv2d(input_dim, embed_dim, kernel_size=1))
62
+ self.proj = nn.Sequential(*stem)
63
+
64
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
65
+
66
+ def forward(self, x):
67
+ B, C, H, W = x.shape
68
+ assert (
69
+ H == self.img_size[0] and W == self.img_size[1]
70
+ ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
71
+ x = self.proj(x)
72
+ if self.flatten:
73
+ x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
74
+ x = self.norm(x)
75
+ return x
76
+
77
+
78
+ def ctranspath():
79
+ model = timm.create_model(
80
+ "swin_tiny_patch4_window7_224", embed_layer=ConvStem, pretrained=False
81
+ )
82
+ return model
83
+
84
+
85
+ model = ctranspath()
86
+ model.head = torch.nn.Identity()
87
+ td = torch.load(r"./ctranspath.pth")
88
+ model.load_state_dict(td["model"], strict=True)
89
+
90
+
91
+ jitted = torch.jit.script(model)
92
+
93
+ torch.jit.save(jitted, "torchscript_model.pt")