Seongyun commited on
Commit
e4e9018
·
verified ·
1 Parent(s): 993851c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -4
README.md CHANGED
@@ -20,7 +20,7 @@ language:
20
  # TL; DR
21
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6550c4f27bbfce1878f5f280/vrQl8D8FV3vqUJYbPgsiG.png)
22
 
23
- Janus is a model trained using [Mistral-7B-v0.2](https://huggingface.co/mistral-community/Mistral-7B-v0.2) as its base model. Janus has been trained on [Multifaceted Collection](), a preference dataset with 192k combinations of values that go beyond generic helpfulness and harmlessness, spanning 65k user instructions. Janus not only excels at generating personalized responses on [Multifaceted Bench]() that cater to various human preferences but is also adept at producing responses that are generally preferred for being helpful and harmless.
24
 
25
  # Model Details
26
 
@@ -30,11 +30,21 @@ Janus is a model trained using [Mistral-7B-v0.2](https://huggingface.co/mistral-
30
  - **Language(s) (NLP):** English
31
  - **License:** Apache 2.0
32
  - **Related Models:** [Janus-66k-7B]() [Janus-DPO-7B](), [Janus-ORPO-7B](), [Janus-RM-7B]()
 
33
  - **Resources for more information:**
34
  - [Research paper]()
35
  - [GitHub Repo](https://github.com/kaistAI/Janus)
36
 
37
- ### Training hyperparameters
 
 
 
 
 
 
 
 
 
38
 
39
  The following hyperparameters were used during training:
40
  - learning_rate: 5e-06
@@ -51,9 +61,18 @@ The following hyperparameters were used during training:
51
  - lr_scheduler_warmup_steps: 10
52
  - num_epochs: 4
53
 
54
- ### Framework versions
55
 
56
  - Transformers 4.40.0.dev0
57
  - Pytorch 2.2.2
58
  - Datasets 2.18.0
59
- - Tokenizers 0.15.0
 
 
 
 
 
 
 
 
 
 
20
  # TL; DR
21
  ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6550c4f27bbfce1878f5f280/vrQl8D8FV3vqUJYbPgsiG.png)
22
 
23
+ Janus is a model trained using [Mistral-7B-v0.2](https://huggingface.co/mistral-community/Mistral-7B-v0.2) as its base model. Janus has been trained on [Multifaceted Collection](), a preference dataset containing 192k unique system messages for aligning LLMs to diverse human preferences. Janus not only excels at generating personalized responses that cater to various human preferences but is also adept at producing responses that are generally preferred for being helpful and harmless.
24
 
25
  # Model Details
26
 
 
30
  - **Language(s) (NLP):** English
31
  - **License:** Apache 2.0
32
  - **Related Models:** [Janus-66k-7B]() [Janus-DPO-7B](), [Janus-ORPO-7B](), [Janus-RM-7B]()
33
+ - **Training Data**: [Multifaceted Collection]()
34
  - **Resources for more information:**
35
  - [Research paper]()
36
  - [GitHub Repo](https://github.com/kaistAI/Janus)
37
 
38
+ # Usage
39
+ Janus is a model generalized for various system messages, allowing users to control the model's response by inputting the desired system message. The input prompt format is as follows:
40
+ ```
41
+ [INST]{system_message}\n{instruction}[/INST]
42
+ ```
43
+ Additionally, an example of the inference code applying this is as follows:
44
+ ```
45
+ ```
46
+ # Training Details
47
+ ## Training hyperparameters
48
 
49
  The following hyperparameters were used during training:
50
  - learning_rate: 5e-06
 
61
  - lr_scheduler_warmup_steps: 10
62
  - num_epochs: 4
63
 
64
+ ## Framework versions
65
 
66
  - Transformers 4.40.0.dev0
67
  - Pytorch 2.2.2
68
  - Datasets 2.18.0
69
+ - Tokenizers 0.15.0
70
+
71
+ # Citation
72
+
73
+ If you find the following model helpful, please consider citing our paper!
74
+
75
+ **BibTeX:**
76
+
77
+ ```bibtex
78
+ ```