kaixkhazaki commited on
Commit
27a7ca3
·
verified ·
1 Parent(s): 425dad0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -2
README.md CHANGED
@@ -4,13 +4,20 @@ license: mit
4
  base_model: dbmdz/bert-base-turkish-cased
5
  tags:
6
  - generated_from_trainer
 
7
  metrics:
8
  - accuracy
9
  - precision
10
  - recall
 
11
  model-index:
12
  - name: turkish-sentiment
13
  results: []
 
 
 
 
 
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,7 +25,7 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # turkish-sentiment
20
 
21
- This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
  - Loss: 0.0957
24
  - Accuracy: 0.9657
@@ -41,6 +48,8 @@ More information needed
41
 
42
  ## Training procedure
43
 
 
 
44
  ### Training hyperparameters
45
 
46
  The following hyperparameters were used during training:
@@ -69,4 +78,4 @@ The following hyperparameters were used during training:
69
  - Transformers 4.48.0.dev0
70
  - Pytorch 2.4.1+cu121
71
  - Datasets 3.1.0
72
- - Tokenizers 0.21.0
 
4
  base_model: dbmdz/bert-base-turkish-cased
5
  tags:
6
  - generated_from_trainer
7
+ - turkish
8
  metrics:
9
  - accuracy
10
  - precision
11
  - recall
12
+ - f1
13
  model-index:
14
  - name: turkish-sentiment
15
  results: []
16
+ datasets:
17
+ - winvoker/turkish-sentiment-analysis-dataset
18
+ language:
19
+ - tr
20
+ pipeline_tag: text-classification
21
  ---
22
 
23
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
25
 
26
  # turkish-sentiment
27
 
28
+ This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on winvoker/turkish-sentiment-analysis-dataset dataset.
29
  It achieves the following results on the evaluation set:
30
  - Loss: 0.0957
31
  - Accuracy: 0.9657
 
48
 
49
  ## Training procedure
50
 
51
+ trained on the full dataset for 1000 steps(apx 20 mins on a single gpu).
52
+
53
  ### Training hyperparameters
54
 
55
  The following hyperparameters were used during training:
 
78
  - Transformers 4.48.0.dev0
79
  - Pytorch 2.4.1+cu121
80
  - Datasets 3.1.0
81
+ - Tokenizers 0.21.0