kaixkhazaki commited on
Commit
35ef4cf
·
verified ·
1 Parent(s): f3e57d3

Pushing the best model checkpoint with cosine lr scheduler

Browse files
README.md CHANGED
@@ -12,11 +12,6 @@ metrics:
12
  model-index:
13
  - name: turkish-zeroshot
14
  results: []
15
- datasets:
16
- - facebook/xnli
17
- language:
18
- - tr
19
- pipeline_tag: zero-shot-classification
20
  ---
21
 
22
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -24,13 +19,13 @@ should probably proofread and complete it, then remove this comment. -->
24
 
25
  # turkish-zeroshot
26
 
27
- This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on facebook/xnli tr dataset.
28
  It achieves the following results on the evaluation set:
29
- - Loss: 0.5937
30
- - Accuracy: 0.7627
31
- - F1: 0.7638
32
- - Precision: 0.7690
33
- - Recall: 0.7627
34
 
35
  ## Model description
36
 
@@ -60,42 +55,86 @@ The following hyperparameters were used during training:
60
 
61
  ### Training results
62
 
63
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
64
- |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
65
- | 1.0682 | 0.0326 | 200 | 1.0787 | 0.4056 | 0.3678 | 0.4635 | 0.4056 |
66
- | 0.9037 | 0.0652 | 400 | 0.8202 | 0.6386 | 0.6334 | 0.6625 | 0.6386 |
67
- | 0.8421 | 0.0978 | 600 | 0.7596 | 0.6735 | 0.6726 | 0.6870 | 0.6735 |
68
- | 0.7779 | 0.1304 | 800 | 0.7160 | 0.7052 | 0.7056 | 0.7125 | 0.7052 |
69
- | 0.7775 | 0.1630 | 1000 | 0.7063 | 0.6992 | 0.7008 | 0.7165 | 0.6992 |
70
- | 0.7482 | 0.1956 | 1200 | 0.7044 | 0.7124 | 0.7122 | 0.7287 | 0.7124 |
71
- | 0.7396 | 0.2282 | 1400 | 0.6641 | 0.7149 | 0.7153 | 0.7262 | 0.7149 |
72
- | 0.7292 | 0.2608 | 1600 | 0.6752 | 0.7108 | 0.7098 | 0.7255 | 0.7108 |
73
- | 0.7211 | 0.2934 | 1800 | 0.6732 | 0.7169 | 0.7166 | 0.7306 | 0.7169 |
74
- | 0.6895 | 0.3259 | 2000 | 0.6592 | 0.7177 | 0.7173 | 0.7315 | 0.7177 |
75
- | 0.7313 | 0.3585 | 2200 | 0.6833 | 0.7165 | 0.7143 | 0.7355 | 0.7165 |
76
- | 0.7058 | 0.3911 | 2400 | 0.6777 | 0.7285 | 0.7286 | 0.7465 | 0.7285 |
77
- | 0.7016 | 0.4237 | 2600 | 0.6564 | 0.7189 | 0.7196 | 0.7447 | 0.7189 |
78
- | 0.7031 | 0.4563 | 2800 | 0.6161 | 0.7478 | 0.7482 | 0.7508 | 0.7478 |
79
- | 0.6967 | 0.4889 | 3000 | 0.6154 | 0.7558 | 0.7566 | 0.7618 | 0.7558 |
80
- | 0.7121 | 0.5215 | 3200 | 0.6163 | 0.7394 | 0.7405 | 0.7582 | 0.7394 |
81
- | 0.6813 | 0.5541 | 3400 | 0.6113 | 0.7490 | 0.7484 | 0.7540 | 0.7490 |
82
- | 0.6604 | 0.5867 | 3600 | 0.6306 | 0.7494 | 0.7500 | 0.7593 | 0.7494 |
83
- | 0.6798 | 0.6193 | 3800 | 0.6149 | 0.7462 | 0.7466 | 0.7552 | 0.7462 |
84
- | 0.6826 | 0.6519 | 4000 | 0.6304 | 0.7410 | 0.7404 | 0.7543 | 0.7410 |
85
- | 0.6605 | 0.6845 | 4200 | 0.5925 | 0.7606 | 0.7616 | 0.7675 | 0.7606 |
86
- | 0.6748 | 0.7171 | 4400 | 0.6228 | 0.7434 | 0.7454 | 0.7595 | 0.7434 |
87
- | 0.6555 | 0.7497 | 4600 | 0.6039 | 0.7542 | 0.7546 | 0.7605 | 0.7542 |
88
- | 0.6596 | 0.7823 | 4800 | 0.6194 | 0.7422 | 0.7428 | 0.7506 | 0.7422 |
89
- | 0.6347 | 0.8149 | 5000 | 0.6007 | 0.7602 | 0.7611 | 0.7682 | 0.7602 |
90
- | 0.6341 | 0.8475 | 5200 | 0.6432 | 0.7410 | 0.7412 | 0.7535 | 0.7410 |
91
- | 0.6644 | 0.8801 | 5400 | 0.5699 | 0.7683 | 0.7693 | 0.7728 | 0.7683 |
92
- | 0.6297 | 0.9126 | 5600 | 0.5878 | 0.7542 | 0.7560 | 0.7646 | 0.7542 |
93
- | 0.6556 | 0.9452 | 5800 | 0.6016 | 0.7478 | 0.7497 | 0.7672 | 0.7478 |
94
- | 0.6353 | 0.9778 | 6000 | 0.5793 | 0.7675 | 0.7688 | 0.7750 | 0.7675 |
95
- | 0.5322 | 1.0104 | 6200 | 0.6177 | 0.7514 | 0.7511 | 0.7567 | 0.7514 |
96
- | 0.52 | 1.0430 | 6400 | 0.5892 | 0.7586 | 0.7591 | 0.7625 | 0.7586 |
97
- | 0.5319 | 1.0756 | 6600 | 0.6037 | 0.7530 | 0.7545 | 0.7648 | 0.7530 |
98
- | 0.5526 | 1.1082 | 6800 | 0.5937 | 0.7627 | 0.7638 | 0.7690 | 0.7627 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
 
101
  ### Framework versions
@@ -103,4 +142,4 @@ The following hyperparameters were used during training:
103
  - Transformers 4.48.0.dev0
104
  - Pytorch 2.4.1+cu121
105
  - Datasets 3.1.0
106
- - Tokenizers 0.21.0
 
12
  model-index:
13
  - name: turkish-zeroshot
14
  results: []
 
 
 
 
 
15
  ---
16
 
17
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
19
 
20
  # turkish-zeroshot
21
 
22
+ This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.6808
25
+ - Accuracy: 0.7671
26
+ - F1: 0.7677
27
+ - Precision: 0.7764
28
+ - Recall: 0.7671
29
 
30
  ## Model description
31
 
 
55
 
56
  ### Training results
57
 
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
59
+ |:-------------:|:------:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
60
+ | 1.09 | 0.0326 | 200 | 1.0950 | 0.3759 | 0.3534 | 0.3966 | 0.3759 |
61
+ | 0.9377 | 0.0652 | 400 | 0.8817 | 0.6092 | 0.6059 | 0.6499 | 0.6092 |
62
+ | 0.8277 | 0.0978 | 600 | 0.7518 | 0.6799 | 0.6801 | 0.6904 | 0.6799 |
63
+ | 0.7771 | 0.1304 | 800 | 0.7274 | 0.6984 | 0.6991 | 0.7138 | 0.6984 |
64
+ | 0.7698 | 0.1630 | 1000 | 0.6928 | 0.7 | 0.7015 | 0.7111 | 0.7 |
65
+ | 0.7619 | 0.1956 | 1200 | 0.6820 | 0.7161 | 0.7166 | 0.7313 | 0.7161 |
66
+ | 0.7453 | 0.2282 | 1400 | 0.6614 | 0.7205 | 0.7217 | 0.7307 | 0.7205 |
67
+ | 0.7287 | 0.2608 | 1600 | 0.6589 | 0.7209 | 0.7204 | 0.7346 | 0.7209 |
68
+ | 0.7168 | 0.2934 | 1800 | 0.6694 | 0.7157 | 0.7157 | 0.7311 | 0.7157 |
69
+ | 0.6923 | 0.3259 | 2000 | 0.6655 | 0.7165 | 0.7167 | 0.7312 | 0.7165 |
70
+ | 0.7348 | 0.3585 | 2200 | 0.6594 | 0.7221 | 0.7207 | 0.7366 | 0.7221 |
71
+ | 0.7022 | 0.3911 | 2400 | 0.6757 | 0.7317 | 0.7309 | 0.7536 | 0.7317 |
72
+ | 0.6968 | 0.4237 | 2600 | 0.6448 | 0.7297 | 0.7305 | 0.7484 | 0.7297 |
73
+ | 0.7011 | 0.4563 | 2800 | 0.6169 | 0.7398 | 0.7403 | 0.7458 | 0.7398 |
74
+ | 0.6949 | 0.4889 | 3000 | 0.6200 | 0.7482 | 0.7483 | 0.7530 | 0.7482 |
75
+ | 0.7042 | 0.5215 | 3200 | 0.6267 | 0.7402 | 0.7406 | 0.7592 | 0.7402 |
76
+ | 0.6884 | 0.5541 | 3400 | 0.6222 | 0.7494 | 0.7487 | 0.7584 | 0.7494 |
77
+ | 0.655 | 0.5867 | 3600 | 0.6460 | 0.7337 | 0.7333 | 0.7485 | 0.7337 |
78
+ | 0.6745 | 0.6193 | 3800 | 0.6133 | 0.7538 | 0.7537 | 0.7574 | 0.7538 |
79
+ | 0.6809 | 0.6519 | 4000 | 0.6338 | 0.7442 | 0.7436 | 0.7544 | 0.7442 |
80
+ | 0.6674 | 0.6845 | 4200 | 0.6118 | 0.7494 | 0.7506 | 0.7588 | 0.7494 |
81
+ | 0.6815 | 0.7171 | 4400 | 0.6173 | 0.7462 | 0.7477 | 0.7587 | 0.7462 |
82
+ | 0.652 | 0.7497 | 4600 | 0.5969 | 0.7659 | 0.7656 | 0.7691 | 0.7659 |
83
+ | 0.6517 | 0.7823 | 4800 | 0.6170 | 0.7506 | 0.7515 | 0.7615 | 0.7506 |
84
+ | 0.6335 | 0.8149 | 5000 | 0.5767 | 0.7731 | 0.7736 | 0.7763 | 0.7731 |
85
+ | 0.6362 | 0.8475 | 5200 | 0.6273 | 0.7542 | 0.7550 | 0.7676 | 0.7542 |
86
+ | 0.6638 | 0.8801 | 5400 | 0.5773 | 0.7743 | 0.7753 | 0.7795 | 0.7743 |
87
+ | 0.6369 | 0.9126 | 5600 | 0.5980 | 0.7534 | 0.7552 | 0.7673 | 0.7534 |
88
+ | 0.6551 | 0.9452 | 5800 | 0.5927 | 0.7526 | 0.7546 | 0.7732 | 0.7526 |
89
+ | 0.6549 | 0.9778 | 6000 | 0.5673 | 0.7618 | 0.7634 | 0.7709 | 0.7618 |
90
+ | 0.5314 | 1.0104 | 6200 | 0.6203 | 0.7590 | 0.7589 | 0.7670 | 0.7590 |
91
+ | 0.5127 | 1.0430 | 6400 | 0.5939 | 0.7663 | 0.7665 | 0.7697 | 0.7663 |
92
+ | 0.5405 | 1.0756 | 6600 | 0.6012 | 0.7594 | 0.7605 | 0.7714 | 0.7594 |
93
+ | 0.5618 | 1.1082 | 6800 | 0.6069 | 0.7614 | 0.7621 | 0.7682 | 0.7614 |
94
+ | 0.5509 | 1.1408 | 7000 | 0.6226 | 0.7538 | 0.7552 | 0.7754 | 0.7538 |
95
+ | 0.5501 | 1.1734 | 7200 | 0.5793 | 0.7703 | 0.7715 | 0.7765 | 0.7703 |
96
+ | 0.5476 | 1.2060 | 7400 | 0.5969 | 0.7627 | 0.7617 | 0.7703 | 0.7627 |
97
+ | 0.5434 | 1.2386 | 7600 | 0.5980 | 0.7578 | 0.7590 | 0.7753 | 0.7578 |
98
+ | 0.5606 | 1.2712 | 7800 | 0.6319 | 0.7518 | 0.7502 | 0.7659 | 0.7518 |
99
+ | 0.5449 | 1.3038 | 8000 | 0.5945 | 0.7574 | 0.7578 | 0.7652 | 0.7574 |
100
+ | 0.5099 | 1.3364 | 8200 | 0.6824 | 0.7426 | 0.7427 | 0.7685 | 0.7426 |
101
+ | 0.5406 | 1.3690 | 8400 | 0.5831 | 0.7695 | 0.7702 | 0.7737 | 0.7695 |
102
+ | 0.5577 | 1.4016 | 8600 | 0.6264 | 0.7490 | 0.7483 | 0.7687 | 0.7490 |
103
+ | 0.5502 | 1.4342 | 8800 | 0.5838 | 0.7647 | 0.7644 | 0.7689 | 0.7647 |
104
+ | 0.527 | 1.4668 | 9000 | 0.5837 | 0.7675 | 0.7679 | 0.7705 | 0.7675 |
105
+ | 0.5066 | 1.4993 | 9200 | 0.5884 | 0.7651 | 0.7660 | 0.7728 | 0.7651 |
106
+ | 0.5391 | 1.5319 | 9400 | 0.5754 | 0.7659 | 0.7665 | 0.7697 | 0.7659 |
107
+ | 0.5276 | 1.5645 | 9600 | 0.5743 | 0.7795 | 0.7803 | 0.7830 | 0.7795 |
108
+ | 0.5329 | 1.5971 | 9800 | 0.5865 | 0.7570 | 0.7585 | 0.7691 | 0.7570 |
109
+ | 0.5467 | 1.6297 | 10000 | 0.6229 | 0.7586 | 0.7598 | 0.7695 | 0.7586 |
110
+ | 0.5373 | 1.6623 | 10200 | 0.6006 | 0.7602 | 0.7610 | 0.7665 | 0.7602 |
111
+ | 0.517 | 1.6949 | 10400 | 0.6037 | 0.7502 | 0.7517 | 0.7668 | 0.7502 |
112
+ | 0.5068 | 1.7275 | 10600 | 0.5945 | 0.7655 | 0.7659 | 0.7729 | 0.7655 |
113
+ | 0.5491 | 1.7601 | 10800 | 0.6104 | 0.7602 | 0.7615 | 0.7730 | 0.7602 |
114
+ | 0.5282 | 1.7927 | 11000 | 0.5829 | 0.7659 | 0.7666 | 0.7781 | 0.7659 |
115
+ | 0.5359 | 1.8253 | 11200 | 0.6102 | 0.7622 | 0.7620 | 0.7754 | 0.7622 |
116
+ | 0.549 | 1.8579 | 11400 | 0.5678 | 0.7643 | 0.7652 | 0.7724 | 0.7643 |
117
+ | 0.525 | 1.8905 | 11600 | 0.6133 | 0.7627 | 0.7635 | 0.7791 | 0.7627 |
118
+ | 0.5297 | 1.9231 | 11800 | 0.5893 | 0.7675 | 0.7679 | 0.7745 | 0.7675 |
119
+ | 0.5438 | 1.9557 | 12000 | 0.5637 | 0.7731 | 0.7740 | 0.7804 | 0.7731 |
120
+ | 0.5426 | 1.9883 | 12200 | 0.5937 | 0.7622 | 0.7624 | 0.7731 | 0.7622 |
121
+ | 0.3892 | 2.0209 | 12400 | 0.6167 | 0.7719 | 0.7725 | 0.7766 | 0.7719 |
122
+ | 0.3618 | 2.0535 | 12600 | 0.7019 | 0.7687 | 0.7695 | 0.7759 | 0.7687 |
123
+ | 0.392 | 2.0860 | 12800 | 0.7179 | 0.7534 | 0.7551 | 0.7795 | 0.7534 |
124
+ | 0.3912 | 2.1186 | 13000 | 0.6969 | 0.7518 | 0.7526 | 0.7715 | 0.7518 |
125
+ | 0.3798 | 2.1512 | 13200 | 0.6487 | 0.7715 | 0.7725 | 0.7800 | 0.7715 |
126
+ | 0.3856 | 2.1838 | 13400 | 0.6196 | 0.7671 | 0.7677 | 0.7709 | 0.7671 |
127
+ | 0.358 | 2.2164 | 13600 | 0.7144 | 0.7574 | 0.7574 | 0.7705 | 0.7574 |
128
+ | 0.3854 | 2.2490 | 13800 | 0.6709 | 0.7598 | 0.7598 | 0.7753 | 0.7598 |
129
+ | 0.3687 | 2.2816 | 14000 | 0.6448 | 0.7631 | 0.7633 | 0.7705 | 0.7631 |
130
+ | 0.3746 | 2.3142 | 14200 | 0.6617 | 0.7723 | 0.7728 | 0.7785 | 0.7723 |
131
+ | 0.3798 | 2.3468 | 14400 | 0.6468 | 0.7727 | 0.7736 | 0.7814 | 0.7727 |
132
+ | 0.3779 | 2.3794 | 14600 | 0.6503 | 0.7691 | 0.7693 | 0.7773 | 0.7691 |
133
+ | 0.3871 | 2.4120 | 14800 | 0.6631 | 0.7618 | 0.7614 | 0.7702 | 0.7618 |
134
+ | 0.3859 | 2.4446 | 15000 | 0.6825 | 0.7635 | 0.7641 | 0.7772 | 0.7635 |
135
+ | 0.4049 | 2.4772 | 15200 | 0.6647 | 0.7655 | 0.7653 | 0.7749 | 0.7655 |
136
+ | 0.3812 | 2.5098 | 15400 | 0.7008 | 0.7558 | 0.7563 | 0.7697 | 0.7558 |
137
+ | 0.3874 | 2.5424 | 15600 | 0.6808 | 0.7671 | 0.7677 | 0.7764 | 0.7671 |
138
 
139
 
140
  ### Framework versions
 
142
  - Transformers 4.48.0.dev0
143
  - Pytorch 2.4.1+cu121
144
  - Datasets 3.1.0
145
+ - Tokenizers 0.21.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8f5d54faac93aecf2fa8a5fab1512c799f2856f95d93185b9788c0c2835561a5
3
  size 442502140
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a36e1af6d18c017723163839490b82c617ab362f00de2cf99e9783ebd0818349
3
  size 442502140
runs/Jan09_06-34-55_ip-10-10-15-55.eu-central-1.compute.internal/events.out.tfevents.1736404496.ip-10-10-15-55.eu-central-1.compute.internal.23155.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c05704a9a3aaa168f77d10555aa40ab4bd6e321c066e2bac9c7503510122ae38
3
+ size 108186
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fd24ec1c2e7c0aa80e2075299bcc14dbd0e011478b3669e7ac095fa0c797a35c
3
  size 5432
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb8f6b6b1e73e2b559de298c27b48e0a8005bd830aeac0f74dd5d5d07207cbd1
3
  size 5432