File size: 1,596 Bytes
eb4eafb
1696782
eb4eafb
 
 
 
 
 
 
 
 
 
 
 
 
 
1696782
eb4eafb
51ab8ee
eb4eafb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51ab8ee
1696782
 
eb4eafb
 
1696782
eb4eafb
 
 
702e05e
eb4eafb
 
 
 
702e05e
 
51ab8ee
 
 
eb4eafb
 
 
 
3dd66ce
eb4eafb
702e05e
3dd66ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
base_model: kaizerBox/retnet-summarization_small
tags:
- generated_from_trainer
datasets:
- xsum
model-index:
- name: retnet-summarization_small
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# retnet-summarization_small

This model is a fine-tuned version of [kaizerBox/retnet-summarization_small](https://huggingface.co/kaizerBox/retnet-summarization_small) on the xsum dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1299

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 4.3711        | 1.0   | 4610  | 4.1533          |
| 4.3448        | 2.0   | 9220  | 4.1370          |
| 4.3247        | 3.0   | 13830 | 4.1299          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0