Create handler.py
Browse files- handler.py +37 -0
handler.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from llama_cpp import Llama
|
3 |
+
import torch
|
4 |
+
from loguru import logger
|
5 |
+
|
6 |
+
MAX_INPUT_TOKEN_LENGTH = 4000
|
7 |
+
MAX_MAX_NEW_TOKENS = 2048
|
8 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
9 |
+
|
10 |
+
class EndpointHandler():
|
11 |
+
def __init__(self, path=""):
|
12 |
+
self.model = Llama(model_path="/repository/iubaris-13b-v3_ggml_Q4_K_S.bin", n_ctx=4000, n_gpu_layers=50, n_threads=cpu_count, verbose=True)
|
13 |
+
|
14 |
+
def get_input_token_length(self, message: str) -> int:
|
15 |
+
input_ids = self.model([message.encode('utf-8')]
|
16 |
+
return len(input_ids)
|
17 |
+
|
18 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
19 |
+
inputs = data.pop("inputs", data)
|
20 |
+
parameters = data.pop("parameters", {})
|
21 |
+
|
22 |
+
parameters["max_new_tokens"] = parameters.pop("max_new_tokens", DEFAULT_MAX_NEW_TOKENS)
|
23 |
+
|
24 |
+
if parameters["max_new_tokens"] > MAX_MAX_NEW_TOKENS:
|
25 |
+
logger.error(f"requested max_new_tokens too high (> {MAX_MAX_NEW_TOKENS})")
|
26 |
+
return [{"generated_text": None, "error": f"requested max_new_tokens too high (> {MAX_MAX_NEW_TOKENS})"}]
|
27 |
+
|
28 |
+
input_token_length = self.get_input_token_length(inputs)
|
29 |
+
if input_token_length > MAX_INPUT_TOKEN_LENGTH:
|
30 |
+
logger.error(f"input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH})")
|
31 |
+
return [{"generated_text": None, "error": f"input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH})"}]
|
32 |
+
|
33 |
+
logger.info(f"inputs: {inputs}")
|
34 |
+
|
35 |
+
outputs = self.model(inputs, **parameters)
|
36 |
+
|
37 |
+
return [{"generated_text": outputs["choices"][0]["text"]}]
|