File size: 1,971 Bytes
af645c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-small-finetuned-ssv2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-small-finetuned-ssv2-finetuned-traffic-dataset-mae
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-small-finetuned-ssv2-finetuned-traffic-dataset-mae

This model is a fine-tuned version of [MCG-NJU/videomae-small-finetuned-ssv2](https://huggingface.co/MCG-NJU/videomae-small-finetuned-ssv2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0486
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 448

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4852        | 0.12  | 56   | 0.4753          | 0.7143   |
| 0.6294        | 1.12  | 112  | 0.0372          | 1.0      |
| 0.4141        | 2.12  | 168  | 0.0060          | 1.0      |
| 0.2121        | 3.12  | 224  | 0.0062          | 1.0      |
| 0.8881        | 4.12  | 280  | 0.0046          | 1.0      |
| 0.3003        | 5.12  | 336  | 0.0054          | 1.0      |
| 0.1027        | 6.12  | 392  | 0.1611          | 0.9286   |
| 0.0029        | 7.12  | 448  | 0.0898          | 0.9286   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.0.1+cu118
- Datasets 2.1.0
- Tokenizers 0.15.2