--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-jpn results: [] --- # speaker-segmentation-fine-tuned-callhome-jpn This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome jpn dataset. It achieves the following results on the evaluation set: - Loss: 0.7498 - Der: 0.2258 - False Alarm: 0.0470 - Missed Detection: 0.1339 - Confusion: 0.0449 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.5797 | 1.0 | 328 | 0.7543 | 0.2334 | 0.0582 | 0.1277 | 0.0476 | | 0.5578 | 2.0 | 656 | 0.7684 | 0.2306 | 0.0446 | 0.1401 | 0.0458 | | 0.5213 | 3.0 | 984 | 0.7569 | 0.2289 | 0.0463 | 0.1368 | 0.0459 | | 0.4971 | 4.0 | 1312 | 0.7448 | 0.2273 | 0.0489 | 0.1329 | 0.0456 | | 0.5026 | 5.0 | 1640 | 0.7498 | 0.2258 | 0.0470 | 0.1339 | 0.0449 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1