--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** kanbac5 - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # Sample Use ```python from unsloth import FastLanguageModel from peft import PeftModel import torch import json import yaml from tqdm import tqdm import re model_id = "llm-jp/llm-jp-3-13b" adapter_id = "kanbac5/llm-jp-3-13b-it-1217llm2024_lora_1217" with open("api_info.yaml", 'r', encoding="utf-8") as yml: parameters = yaml.safe_load(yml) HF_TOKEN = parameters["token"] dtype = None load_in_4bit = True model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, ) model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN) datasets = [] with open("data/elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" FastLanguageModel.for_inference(model) results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) json_file_id = re.sub(".*/", "", adapter_id) with open(f"{json_file_id}_output_1217.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ```