File size: 26,421 Bytes
9bf76c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
---
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
language:
- hu
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1044013
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Emberek várnak a lámpánál kerékpárral.
  sentences:
  - Az emberek piros lámpánál haladnak.
  - Az emberek a kerékpárjukon vannak.
  - Egy fekete kutya úszik a vízben egy teniszlabdával a szájában
- source_sentence: A kutya a vízben van.
  sentences:
  - Két férfi takarítja a havat a tetőről, az egyik egy emelőben ül, a másik pedig
    a tetőn.
  - A macska a vízben van, és dühös.
  - Egy kutya van a vízben, a szájában egy faág.
- source_sentence: A  feketét visel.
  sentences:
  - Egy barna kutya fröcsköl, ahogy úszik a vízben.
  - Egy tetoválással rendelkező nő, aki fekete tank tetején néz a földre.
  - 'Egy kékbe öltözött nő intenzív arckifejezéssel üti a teniszlabdát. A képen:'
- source_sentence: Az emberek alszanak.
  sentences:
  - Három ember beszélget egy városi utcán.
  - A  fehéret visel.
  - Egy apa és a fia ölelgeti alvás közben.
- source_sentence: Az emberek alszanak.
  sentences:
  - Egy feketébe öltözött  cigarettát és bevásárlótáskát tart a kezében, miközben
    egy idősebb  átmegy az utcán.
  - Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy
    sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős
    elmosódás tesz kivehetetlenné.
  - Egy apa és a fia ölelgeti alvás közben.
model-index:
- name: paraphrase-multilingual-MiniLM-L12-v2-hu
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: all nli dev
      type: all-nli-dev
    metrics:
    - type: cosine_accuracy
      value: 0.9918
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.0102
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.99
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.99
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.9918
      name: Max Accuracy
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: all nli test
      type: all-nli-test
    metrics:
    - type: cosine_accuracy
      value: 0.9937878787878788
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.00803030303030303
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.9928787878787879
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.9924242424242424
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.9937878787878788
      name: Max Accuracy
---

# paraphrase-multilingual-MiniLM-L12-v2-hu

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the train dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision ae06c001a2546bef168b9bf8f570ccb1a16aaa27 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - train
- **Language:** hu
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("karsar/paraphrase-multilingual-MiniLM-L12-hu-v2")
# Run inference
sentences = [
    'Az emberek alszanak.',
    'Egy apa és a fia ölelgeti alvás közben.',
    'Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős elmosódás tesz kivehetetlenné.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet
* Dataset: `all-nli-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| cosine_accuracy    | 0.9918     |
| dot_accuracy       | 0.0102     |
| manhattan_accuracy | 0.99       |
| euclidean_accuracy | 0.99       |
| **max_accuracy**   | **0.9918** |

#### Triplet
* Dataset: `all-nli-test`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| cosine_accuracy    | 0.9938     |
| dot_accuracy       | 0.008      |
| manhattan_accuracy | 0.9929     |
| euclidean_accuracy | 0.9924     |
| **max_accuracy**   | **0.9938** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### train

* Dataset: train
* Size: 1,044,013 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 11.73 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.24 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.07 tokens</li><li>max: 53 tokens</li></ul> |
* Samples:
  | anchor                                                                     | positive                                      | negative                                                       |
  |:---------------------------------------------------------------------------|:----------------------------------------------|:---------------------------------------------------------------|
  | <code>Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett.</code> | <code>Egy ember a szabadban, lóháton.</code>  | <code>Egy ember egy étteremben van, és omlettet rendel.</code> |
  | <code>Gyerekek mosolyogva és integetett a kamera</code>                    | <code>Gyermekek vannak jelen</code>           | <code>A gyerekek homlokot rántanak</code>                      |
  | <code>Egy fiú ugrál a gördeszkát a közepén egy piros híd.</code>           | <code>A fiú gördeszkás trükköt csinál.</code> | <code>A fiú korcsolyázik a járdán.</code>                      |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### train

* Dataset: train
* Size: 5,000 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 11.73 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.24 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.07 tokens</li><li>max: 53 tokens</li></ul> |
* Samples:
  | anchor                                                                     | positive                                      | negative                                                       |
  |:---------------------------------------------------------------------------|:----------------------------------------------|:---------------------------------------------------------------|
  | <code>Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett.</code> | <code>Egy ember a szabadban, lóháton.</code>  | <code>Egy ember egy étteremben van, és omlettet rendel.</code> |
  | <code>Gyerekek mosolyogva és integetett a kamera</code>                    | <code>Gyermekek vannak jelen</code>           | <code>A gyerekek homlokot rántanak</code>                      |
  | <code>Egy fiú ugrál a gördeszkát a közepén egy piros híd.</code>           | <code>A fiú gördeszkás trükköt csinál.</code> | <code>A fiú korcsolyázik a járdán.</code>                      |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | train loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
|:------:|:----:|:-------------:|:----------:|:------------------------:|:-------------------------:|
| 0      | 0    | -             | -          | 0.7574                   | -                         |
| 0.0123 | 100  | 2.5472        | -          | -                        | -                         |
| 0.0245 | 200  | 2.0478        | -          | -                        | -                         |
| 0.0368 | 300  | 1.8426        | -          | -                        | -                         |
| 0.0490 | 400  | 1.698         | -          | -                        | -                         |
| 0.0613 | 500  | 1.5715        | -          | -                        | -                         |
| 0.0736 | 600  | 1.4616        | -          | -                        | -                         |
| 0.0858 | 700  | 1.6106        | -          | -                        | -                         |
| 0.0981 | 800  | 1.5849        | -          | -                        | -                         |
| 0.1103 | 900  | 1.5374        | -          | -                        | -                         |
| 0.1226 | 1000 | 1.3653        | -          | -                        | -                         |
| 0.1349 | 1100 | 1.274         | -          | -                        | -                         |
| 0.1471 | 1200 | 1.1907        | -          | -                        | -                         |
| 0.1594 | 1300 | 1.2155        | -          | -                        | -                         |
| 0.1716 | 1400 | 1.2786        | -          | -                        | -                         |
| 0.1839 | 1500 | 1.1062        | -          | -                        | -                         |
| 0.1962 | 1600 | 1.0289        | -          | -                        | -                         |
| 0.2084 | 1700 | 1.0013        | -          | -                        | -                         |
| 0.2207 | 1800 | 0.9209        | -          | -                        | -                         |
| 0.2329 | 1900 | 0.8095        | -          | -                        | -                         |
| 0.2452 | 2000 | 0.9753        | 0.1916     | 0.9558                   | -                         |
| 0.2574 | 2100 | 0.8728        | -          | -                        | -                         |
| 0.2697 | 2200 | 0.8343        | -          | -                        | -                         |
| 0.2820 | 2300 | 0.7203        | -          | -                        | -                         |
| 0.2942 | 2400 | 0.6901        | -          | -                        | -                         |
| 0.3065 | 2500 | 0.6606        | -          | -                        | -                         |
| 0.3187 | 2600 | 0.7205        | -          | -                        | -                         |
| 0.3310 | 2700 | 0.7479        | -          | -                        | -                         |
| 0.3433 | 2800 | 0.6677        | -          | -                        | -                         |
| 0.3555 | 2900 | 1.2531        | -          | -                        | -                         |
| 0.3678 | 3000 | 1.3619        | -          | -                        | -                         |
| 0.3800 | 3100 | 1.3923        | -          | -                        | -                         |
| 0.3923 | 3200 | 1.412         | -          | -                        | -                         |
| 0.4046 | 3300 | 1.3904        | -          | -                        | -                         |
| 0.4168 | 3400 | 1.3782        | -          | -                        | -                         |
| 0.4291 | 3500 | 1.3601        | -          | -                        | -                         |
| 0.4413 | 3600 | 1.3582        | -          | -                        | -                         |
| 0.4536 | 3700 | 1.3402        | -          | -                        | -                         |
| 0.4659 | 3800 | 1.32          | -          | -                        | -                         |
| 0.4781 | 3900 | 1.3277        | -          | -                        | -                         |
| 0.4904 | 4000 | 1.3112        | 0.0699     | 0.987                    | -                         |
| 0.5026 | 4100 | 1.2992        | -          | -                        | -                         |
| 0.5149 | 4200 | 1.3005        | -          | -                        | -                         |
| 0.5272 | 4300 | 1.2978        | -          | -                        | -                         |
| 0.5394 | 4400 | 1.272         | -          | -                        | -                         |
| 0.5517 | 4500 | 1.2864        | -          | -                        | -                         |
| 0.5639 | 4600 | 1.2519        | -          | -                        | -                         |
| 0.5762 | 4700 | 1.1924        | -          | -                        | -                         |
| 0.5885 | 4800 | 1.1778        | -          | -                        | -                         |
| 0.6007 | 4900 | 1.1801        | -          | -                        | -                         |
| 0.6130 | 5000 | 1.1666        | -          | -                        | -                         |
| 0.6252 | 5100 | 1.1682        | -          | -                        | -                         |
| 0.6375 | 5200 | 1.1518        | -          | -                        | -                         |
| 0.6497 | 5300 | 1.1606        | -          | -                        | -                         |
| 0.6620 | 5400 | 1.1534        | -          | -                        | -                         |
| 0.6743 | 5500 | 1.1473        | -          | -                        | -                         |
| 0.6865 | 5600 | 1.1596        | -          | -                        | -                         |
| 0.6988 | 5700 | 1.1536        | -          | -                        | -                         |
| 0.7110 | 5800 | 1.1517        | -          | -                        | -                         |
| 0.7233 | 5900 | 1.1517        | -          | -                        | -                         |
| 0.7356 | 6000 | 1.153         | 0.0359     | 0.9896                   | -                         |
| 0.7478 | 6100 | 1.142         | -          | -                        | -                         |
| 0.7601 | 6200 | 1.093         | -          | -                        | -                         |
| 0.7723 | 6300 | 1.1764        | -          | -                        | -                         |
| 0.7846 | 6400 | 1.1868        | -          | -                        | -                         |
| 0.7969 | 6500 | 1.0308        | -          | -                        | -                         |
| 0.8091 | 6600 | 1.0122        | -          | -                        | -                         |
| 0.8214 | 6700 | 1.0084        | -          | -                        | -                         |
| 0.8336 | 6800 | 1.0151        | -          | -                        | -                         |
| 0.8459 | 6900 | 1.0121        | -          | -                        | -                         |
| 0.8582 | 7000 | 1.0071        | -          | -                        | -                         |
| 0.8704 | 7100 | 1.1543        | -          | -                        | -                         |
| 0.8827 | 7200 | 1.1915        | -          | -                        | -                         |
| 0.8949 | 7300 | 1.2224        | -          | -                        | -                         |
| 0.9072 | 7400 | 1.1463        | -          | -                        | -                         |
| 0.9195 | 7500 | 1.0254        | -          | -                        | -                         |
| 0.9317 | 7600 | 1.2396        | -          | -                        | -                         |
| 0.9440 | 7700 | 1.1225        | -          | -                        | -                         |
| 0.9562 | 7800 | 0.7177        | -          | -                        | -                         |
| 0.9685 | 7900 | 0.0681        | -          | -                        | -                         |
| 0.9808 | 8000 | 0.0264        | 0.0317     | 0.9918                   | -                         |
| 0.9930 | 8100 | 0.078         | -          | -                        | -                         |
| 1.0    | 8157 | -             | -          | -                        | 0.9938                    |


### Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.1.1
- Transformers: 4.44.0
- PyTorch: 2.3.0.post101
- Accelerate: 0.33.0
- Datasets: 3.0.2
- Tokenizers: 0.19.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->