--- model-index: - name: karsar/paraphrase-multilingual-MiniLM-L12-hu_v1 results: - dataset: config: hun_Latn-hun_Latn name: MTEB BelebeleRetrieval (hun_Latn-hun_Latn) revision: 75b399394a9803252cfec289d103de462763db7c split: test type: facebook/belebele metrics: - type: main_score value: 77.865 - type: map_at_1 value: 67.333 - type: map_at_10 value: 74.404 - type: map_at_100 value: 74.802 - type: map_at_1000 value: 74.809 - type: map_at_20 value: 74.63 - type: map_at_3 value: 72.796 - type: map_at_5 value: 73.67399999999999 - type: mrr_at_1 value: 67.33333333333333 - type: mrr_at_10 value: 74.40396825396829 - type: mrr_at_100 value: 74.80177264047548 - type: mrr_at_1000 value: 74.80937346439818 - type: mrr_at_20 value: 74.62979204843244 - type: mrr_at_3 value: 72.7962962962963 - type: mrr_at_5 value: 73.6740740740741 - type: nauc_map_at_1000_diff1 value: 76.08133094195743 - type: nauc_map_at_1000_max value: 61.727834175182736 - type: nauc_map_at_1000_std value: -2.3231732437794568 - type: nauc_map_at_100_diff1 value: 76.07916259051902 - type: nauc_map_at_100_max value: 61.72703450852774 - type: nauc_map_at_100_std value: -2.3175338063349575 - type: nauc_map_at_10_diff1 value: 75.97996147738112 - type: nauc_map_at_10_max value: 61.860784493617224 - type: nauc_map_at_10_std value: -2.4887315051072356 - type: nauc_map_at_1_diff1 value: 78.13561632940586 - type: nauc_map_at_1_max value: 59.243520843511746 - type: nauc_map_at_1_std value: -2.6689239089679515 - type: nauc_map_at_20_diff1 value: 76.06883452011327 - type: nauc_map_at_20_max value: 61.775589074510826 - type: nauc_map_at_20_std value: -2.3905575770447585 - type: nauc_map_at_3_diff1 value: 75.85937006372846 - type: nauc_map_at_3_max value: 61.819093557650895 - type: nauc_map_at_3_std value: -2.5207238945764647 - type: nauc_map_at_5_diff1 value: 76.06929563357589 - type: nauc_map_at_5_max value: 61.93563829360039 - type: nauc_map_at_5_std value: -1.9424637593671918 - type: nauc_mrr_at_1000_diff1 value: 76.08133094195743 - type: nauc_mrr_at_1000_max value: 61.727834175182736 - type: nauc_mrr_at_1000_std value: -2.3231732437794568 - type: nauc_mrr_at_100_diff1 value: 76.07916259051902 - type: nauc_mrr_at_100_max value: 61.72703450852774 - type: nauc_mrr_at_100_std value: -2.3175338063349575 - type: nauc_mrr_at_10_diff1 value: 75.97996147738112 - type: nauc_mrr_at_10_max value: 61.860784493617224 - type: nauc_mrr_at_10_std value: -2.4887315051072356 - type: nauc_mrr_at_1_diff1 value: 78.13561632940586 - type: nauc_mrr_at_1_max value: 59.243520843511746 - type: nauc_mrr_at_1_std value: -2.6689239089679515 - type: nauc_mrr_at_20_diff1 value: 76.06883452011327 - type: nauc_mrr_at_20_max value: 61.775589074510826 - type: nauc_mrr_at_20_std value: -2.3905575770447585 - type: nauc_mrr_at_3_diff1 value: 75.85937006372846 - type: nauc_mrr_at_3_max value: 61.819093557650895 - type: nauc_mrr_at_3_std value: -2.5207238945764647 - type: nauc_mrr_at_5_diff1 value: 76.06929563357589 - type: nauc_mrr_at_5_max value: 61.93563829360039 - type: nauc_mrr_at_5_std value: -1.9424637593671918 - type: nauc_ndcg_at_1000_diff1 value: 75.7057240434196 - type: nauc_ndcg_at_1000_max value: 62.021717989510385 - type: nauc_ndcg_at_1000_std value: -2.2522490330905103 - type: nauc_ndcg_at_100_diff1 value: 75.62156032414751 - type: nauc_ndcg_at_100_max value: 61.97932968109654 - type: nauc_ndcg_at_100_std value: -2.0118635701265375 - type: nauc_ndcg_at_10_diff1 value: 75.09836101324169 - type: nauc_ndcg_at_10_max value: 62.703427209156736 - type: nauc_ndcg_at_10_std value: -2.9287738405282395 - type: nauc_ndcg_at_1_diff1 value: 78.13561632940586 - type: nauc_ndcg_at_1_max value: 59.243520843511746 - type: nauc_ndcg_at_1_std value: -2.6689239089679515 - type: nauc_ndcg_at_20_diff1 value: 75.46348763248093 - type: nauc_ndcg_at_20_max value: 62.35498579351012 - type: nauc_ndcg_at_20_std value: -2.577338920595739 - type: nauc_ndcg_at_3_diff1 value: 74.92773626606146 - type: nauc_ndcg_at_3_max value: 62.55812080913172 - type: nauc_ndcg_at_3_std value: -2.5630879822636476 - type: nauc_ndcg_at_5_diff1 value: 75.3100398038724 - type: nauc_ndcg_at_5_max value: 62.81733471459409 - type: nauc_ndcg_at_5_std value: -1.501748019065971 - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_100_diff1 value: 66.63165266106552 - type: nauc_precision_at_100_max value: 57.60582010582053 - type: nauc_precision_at_100_std value: 23.844537815126937 - type: nauc_precision_at_10_diff1 value: 70.08984254109942 - type: nauc_precision_at_10_max value: 67.45880653843606 - type: nauc_precision_at_10_std value: -6.3555626412584 - type: nauc_precision_at_1_diff1 value: 78.13561632940586 - type: nauc_precision_at_1_max value: 59.243520843511746 - type: nauc_precision_at_1_std value: -2.6689239089679515 - type: nauc_precision_at_20_diff1 value: 71.63306637208878 - type: nauc_precision_at_20_max value: 65.99137307505141 - type: nauc_precision_at_20_std value: -4.675767020423249 - type: nauc_precision_at_3_diff1 value: 71.57608769475272 - type: nauc_precision_at_3_max value: 65.10683383365713 - type: nauc_precision_at_3_std value: -2.7514636167292985 - type: nauc_precision_at_5_diff1 value: 72.21412151067312 - type: nauc_precision_at_5_max value: 66.43448275862069 - type: nauc_precision_at_5_std value: 0.4555008210180189 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: 66.63165266106327 - type: nauc_recall_at_100_max value: 57.60582010581922 - type: nauc_recall_at_100_std value: 23.844537815125907 - type: nauc_recall_at_10_diff1 value: 70.08984254109967 - type: nauc_recall_at_10_max value: 67.45880653843632 - type: nauc_recall_at_10_std value: -6.355562641258283 - type: nauc_recall_at_1_diff1 value: 78.13561632940586 - type: nauc_recall_at_1_max value: 59.243520843511746 - type: nauc_recall_at_1_std value: -2.6689239089679515 - type: nauc_recall_at_20_diff1 value: 71.6330663720887 - type: nauc_recall_at_20_max value: 65.9913730750516 - type: nauc_recall_at_20_std value: -4.675767020422999 - type: nauc_recall_at_3_diff1 value: 71.57608769475274 - type: nauc_recall_at_3_max value: 65.106833833657 - type: nauc_recall_at_3_std value: -2.7514636167294 - type: nauc_recall_at_5_diff1 value: 72.21412151067315 - type: nauc_recall_at_5_max value: 66.43448275862077 - type: nauc_recall_at_5_std value: 0.4555008210180812 - type: ndcg_at_1 value: 67.333 - type: ndcg_at_10 value: 77.865 - type: ndcg_at_100 value: 79.927 - type: ndcg_at_1000 value: 80.104 - type: ndcg_at_20 value: 78.701 - type: ndcg_at_3 value: 74.509 - type: ndcg_at_5 value: 76.101 - type: precision_at_1 value: 67.333 - type: precision_at_10 value: 8.878 - type: precision_at_100 value: 0.987 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.606 - type: precision_at_3 value: 26.480999999999998 - type: precision_at_5 value: 16.667 - type: recall_at_1 value: 67.333 - type: recall_at_10 value: 88.778 - type: recall_at_100 value: 98.667 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 92.111 - type: recall_at_3 value: 79.444 - type: recall_at_5 value: 83.333 task: type: Retrieval - dataset: config: hun_Latn-eng_Latn name: MTEB BelebeleRetrieval (hun_Latn-eng_Latn) revision: 75b399394a9803252cfec289d103de462763db7c split: test type: facebook/belebele metrics: - type: main_score value: 71.307 - type: map_at_1 value: 57.778 - type: map_at_10 value: 66.843 - type: map_at_100 value: 67.368 - type: map_at_1000 value: 67.38300000000001 - type: map_at_20 value: 67.162 - type: map_at_3 value: 64.704 - type: map_at_5 value: 65.97 - type: mrr_at_1 value: 57.77777777777777 - type: mrr_at_10 value: 66.8428130511464 - type: mrr_at_100 value: 67.36803803097415 - type: mrr_at_1000 value: 67.38317813286176 - type: mrr_at_20 value: 67.16164827986293 - type: mrr_at_3 value: 64.7037037037037 - type: mrr_at_5 value: 65.97037037037038 - type: nauc_map_at_1000_diff1 value: 69.02219987684592 - type: nauc_map_at_1000_max value: 60.114123597785785 - type: nauc_map_at_1000_std value: 4.880216382742553 - type: nauc_map_at_100_diff1 value: 69.01116363727591 - type: nauc_map_at_100_max value: 60.11716622079215 - type: nauc_map_at_100_std value: 4.890393343425179 - type: nauc_map_at_10_diff1 value: 68.95240309900163 - type: nauc_map_at_10_max value: 60.124170478386105 - type: nauc_map_at_10_std value: 4.819161459028938 - type: nauc_map_at_1_diff1 value: 72.45335820895522 - type: nauc_map_at_1_max value: 59.127316006176 - type: nauc_map_at_1_std value: 6.580191713844538 - type: nauc_map_at_20_diff1 value: 68.87249492072671 - type: nauc_map_at_20_max value: 60.04834608184139 - type: nauc_map_at_20_std value: 4.807958211395879 - type: nauc_map_at_3_diff1 value: 69.38092756897547 - type: nauc_map_at_3_max value: 60.30271451423346 - type: nauc_map_at_3_std value: 3.9374045068220322 - type: nauc_map_at_5_diff1 value: 69.10875854889262 - type: nauc_map_at_5_max value: 60.24557626138646 - type: nauc_map_at_5_std value: 4.271289591515184 - type: nauc_mrr_at_1000_diff1 value: 69.02219987684592 - type: nauc_mrr_at_1000_max value: 60.114123597785785 - type: nauc_mrr_at_1000_std value: 4.880216382742553 - type: nauc_mrr_at_100_diff1 value: 69.01116363727591 - type: nauc_mrr_at_100_max value: 60.11716622079215 - type: nauc_mrr_at_100_std value: 4.890393343425179 - type: nauc_mrr_at_10_diff1 value: 68.95240309900163 - type: nauc_mrr_at_10_max value: 60.124170478386105 - type: nauc_mrr_at_10_std value: 4.819161459028938 - type: nauc_mrr_at_1_diff1 value: 72.45335820895522 - type: nauc_mrr_at_1_max value: 59.127316006176 - type: nauc_mrr_at_1_std value: 6.580191713844538 - type: nauc_mrr_at_20_diff1 value: 68.87249492072671 - type: nauc_mrr_at_20_max value: 60.04834608184139 - type: nauc_mrr_at_20_std value: 4.807958211395879 - type: nauc_mrr_at_3_diff1 value: 69.38092756897547 - type: nauc_mrr_at_3_max value: 60.30271451423346 - type: nauc_mrr_at_3_std value: 3.9374045068220322 - type: nauc_mrr_at_5_diff1 value: 69.10875854889262 - type: nauc_mrr_at_5_max value: 60.24557626138646 - type: nauc_mrr_at_5_std value: 4.271289591515184 - type: nauc_ndcg_at_1000_diff1 value: 68.36151731152576 - type: nauc_ndcg_at_1000_max value: 60.21499073164881 - type: nauc_ndcg_at_1000_std value: 5.019374170320369 - type: nauc_ndcg_at_100_diff1 value: 68.12777182930174 - type: nauc_ndcg_at_100_max value: 60.293069076013296 - type: nauc_ndcg_at_100_std value: 5.375522795479381 - type: nauc_ndcg_at_10_diff1 value: 67.46914440211127 - type: nauc_ndcg_at_10_max value: 60.210209508170976 - type: nauc_ndcg_at_10_std value: 4.921793458534013 - type: nauc_ndcg_at_1_diff1 value: 72.45335820895522 - type: nauc_ndcg_at_1_max value: 59.127316006176 - type: nauc_ndcg_at_1_std value: 6.580191713844538 - type: nauc_ndcg_at_20_diff1 value: 67.09692054164125 - type: nauc_ndcg_at_20_max value: 59.89689460185056 - type: nauc_ndcg_at_20_std value: 4.977631579372532 - type: nauc_ndcg_at_3_diff1 value: 68.54468748113734 - type: nauc_ndcg_at_3_max value: 60.66886257099051 - type: nauc_ndcg_at_3_std value: 3.073807310026356 - type: nauc_ndcg_at_5_diff1 value: 67.94441056262235 - type: nauc_ndcg_at_5_max value: 60.47774252804478 - type: nauc_ndcg_at_5_std value: 3.572034464519458 - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_100_diff1 value: 52.808123249299676 - type: nauc_precision_at_100_max value: 65.81699346405254 - type: nauc_precision_at_100_std value: 31.809056956116383 - type: nauc_precision_at_10_diff1 value: 59.02820830750145 - type: nauc_precision_at_10_max value: 60.33787972721626 - type: nauc_precision_at_10_std value: 6.405175213296739 - type: nauc_precision_at_1_diff1 value: 72.45335820895522 - type: nauc_precision_at_1_max value: 59.127316006176 - type: nauc_precision_at_1_std value: 6.580191713844538 - type: nauc_precision_at_20_diff1 value: 52.242994576107485 - type: nauc_precision_at_20_max value: 57.56617253643015 - type: nauc_precision_at_20_std value: 7.9884388212213455 - type: nauc_precision_at_3_diff1 value: 65.73191064426206 - type: nauc_precision_at_3_max value: 61.92373010829596 - type: nauc_precision_at_3_std value: 0.096317142458587 - type: nauc_precision_at_5_diff1 value: 63.20464039592358 - type: nauc_precision_at_5_max value: 61.25721735891223 - type: nauc_precision_at_5_std value: 0.7937099220392029 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: 52.80812324929921 - type: nauc_recall_at_100_max value: 65.81699346405242 - type: nauc_recall_at_100_std value: 31.809056956115235 - type: nauc_recall_at_10_diff1 value: 59.02820830750159 - type: nauc_recall_at_10_max value: 60.337879727216446 - type: nauc_recall_at_10_std value: 6.405175213296646 - type: nauc_recall_at_1_diff1 value: 72.45335820895522 - type: nauc_recall_at_1_max value: 59.127316006176 - type: nauc_recall_at_1_std value: 6.580191713844538 - type: nauc_recall_at_20_diff1 value: 52.242994576107534 - type: nauc_recall_at_20_max value: 57.56617253643034 - type: nauc_recall_at_20_std value: 7.988438821221468 - type: nauc_recall_at_3_diff1 value: 65.73191064426209 - type: nauc_recall_at_3_max value: 61.923730108295906 - type: nauc_recall_at_3_std value: 0.09631714245861488 - type: nauc_recall_at_5_diff1 value: 63.204640395923626 - type: nauc_recall_at_5_max value: 61.25721735891235 - type: nauc_recall_at_5_std value: 0.7937099220392697 - type: ndcg_at_1 value: 57.778 - type: ndcg_at_10 value: 71.307 - type: ndcg_at_100 value: 73.942 - type: ndcg_at_1000 value: 74.248 - type: ndcg_at_20 value: 72.499 - type: ndcg_at_3 value: 66.95 - type: ndcg_at_5 value: 69.21199999999999 - type: precision_at_1 value: 57.778 - type: precision_at_10 value: 8.533 - type: precision_at_100 value: 0.9780000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.506 - type: precision_at_3 value: 24.481 - type: precision_at_5 value: 15.778 - type: recall_at_1 value: 57.778 - type: recall_at_10 value: 85.333 - type: recall_at_100 value: 97.77799999999999 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 90.11099999999999 - type: recall_at_3 value: 73.444 - type: recall_at_5 value: 78.889 task: type: Retrieval - dataset: config: eng_Latn-hun_Latn name: MTEB BelebeleRetrieval (eng_Latn-hun_Latn) revision: 75b399394a9803252cfec289d103de462763db7c split: test type: facebook/belebele metrics: - type: main_score value: 73.668 - type: map_at_1 value: 60.778 - type: map_at_10 value: 69.571 - type: map_at_100 value: 70.114 - type: map_at_1000 value: 70.124 - type: map_at_20 value: 69.93700000000001 - type: map_at_3 value: 67.778 - type: map_at_5 value: 68.872 - type: mrr_at_1 value: 60.77777777777777 - type: mrr_at_10 value: 69.57142857142857 - type: mrr_at_100 value: 70.1136336675579 - type: mrr_at_1000 value: 70.12432347462514 - type: mrr_at_20 value: 69.93690215204663 - type: mrr_at_3 value: 67.77777777777779 - type: mrr_at_5 value: 68.87222222222223 - type: nauc_map_at_1000_diff1 value: 70.84789011327231 - type: nauc_map_at_1000_max value: 60.852088181225824 - type: nauc_map_at_1000_std value: 6.549993568212846 - type: nauc_map_at_100_diff1 value: 70.84603146007751 - type: nauc_map_at_100_max value: 60.859417397516125 - type: nauc_map_at_100_std value: 6.577244018939677 - type: nauc_map_at_10_diff1 value: 70.71490936568583 - type: nauc_map_at_10_max value: 60.94472236517367 - type: nauc_map_at_10_std value: 6.53657697773106 - type: nauc_map_at_1_diff1 value: 74.59301032751448 - type: nauc_map_at_1_max value: 59.251209223705935 - type: nauc_map_at_1_std value: 6.536579330592454 - type: nauc_map_at_20_diff1 value: 70.69902333418673 - type: nauc_map_at_20_max value: 60.84819592450007 - type: nauc_map_at_20_std value: 6.487171209675751 - type: nauc_map_at_3_diff1 value: 70.94073456299253 - type: nauc_map_at_3_max value: 61.117845574972286 - type: nauc_map_at_3_std value: 5.824524654602759 - type: nauc_map_at_5_diff1 value: 70.64337838638826 - type: nauc_map_at_5_max value: 60.69375707294804 - type: nauc_map_at_5_std value: 6.1403804587682025 - type: nauc_mrr_at_1000_diff1 value: 70.84789011327231 - type: nauc_mrr_at_1000_max value: 60.852088181225824 - type: nauc_mrr_at_1000_std value: 6.549993568212846 - type: nauc_mrr_at_100_diff1 value: 70.84603146007751 - type: nauc_mrr_at_100_max value: 60.859417397516125 - type: nauc_mrr_at_100_std value: 6.577244018939677 - type: nauc_mrr_at_10_diff1 value: 70.71490936568583 - type: nauc_mrr_at_10_max value: 60.94472236517367 - type: nauc_mrr_at_10_std value: 6.53657697773106 - type: nauc_mrr_at_1_diff1 value: 74.59301032751448 - type: nauc_mrr_at_1_max value: 59.251209223705935 - type: nauc_mrr_at_1_std value: 6.536579330592454 - type: nauc_mrr_at_20_diff1 value: 70.69902333418673 - type: nauc_mrr_at_20_max value: 60.84819592450007 - type: nauc_mrr_at_20_std value: 6.487171209675751 - type: nauc_mrr_at_3_diff1 value: 70.94073456299253 - type: nauc_mrr_at_3_max value: 61.117845574972286 - type: nauc_mrr_at_3_std value: 5.824524654602759 - type: nauc_mrr_at_5_diff1 value: 70.64337838638826 - type: nauc_mrr_at_5_max value: 60.69375707294804 - type: nauc_mrr_at_5_std value: 6.1403804587682025 - type: nauc_ndcg_at_1000_diff1 value: 70.2568421673153 - type: nauc_ndcg_at_1000_max value: 61.154155762479746 - type: nauc_ndcg_at_1000_std value: 6.987492117976732 - type: nauc_ndcg_at_100_diff1 value: 70.23106290886678 - type: nauc_ndcg_at_100_max value: 61.387176821366296 - type: nauc_ndcg_at_100_std value: 7.782749694416603 - type: nauc_ndcg_at_10_diff1 value: 69.26227190907855 - type: nauc_ndcg_at_10_max value: 61.634434826859874 - type: nauc_ndcg_at_10_std value: 7.185316156791736 - type: nauc_ndcg_at_1_diff1 value: 74.59301032751448 - type: nauc_ndcg_at_1_max value: 59.251209223705935 - type: nauc_ndcg_at_1_std value: 6.536579330592454 - type: nauc_ndcg_at_20_diff1 value: 69.1954116973286 - type: nauc_ndcg_at_20_max value: 61.38887961478062 - type: nauc_ndcg_at_20_std value: 7.1318041010309585 - type: nauc_ndcg_at_3_diff1 value: 69.75775816678905 - type: nauc_ndcg_at_3_max value: 61.67436817540673 - type: nauc_ndcg_at_3_std value: 5.650531149732009 - type: nauc_ndcg_at_5_diff1 value: 69.1651947412561 - type: nauc_ndcg_at_5_max value: 60.97882565960433 - type: nauc_ndcg_at_5_std value: 6.203128058155249 - type: nauc_precision_at_1000_diff1 value: .nan - type: nauc_precision_at_1000_max value: .nan - type: nauc_precision_at_1000_std value: .nan - type: nauc_precision_at_100_diff1 value: 68.65491294557121 - type: nauc_precision_at_100_max value: 80.36744109408565 - type: nauc_precision_at_100_std value: 70.92327126929257 - type: nauc_precision_at_10_diff1 value: 61.29162638094176 - type: nauc_precision_at_10_max value: 65.7264903076506 - type: nauc_precision_at_10_std value: 11.47548778748128 - type: nauc_precision_at_1_diff1 value: 74.59301032751448 - type: nauc_precision_at_1_max value: 59.251209223705935 - type: nauc_precision_at_1_std value: 6.536579330592454 - type: nauc_precision_at_20_diff1 value: 56.51478369125409 - type: nauc_precision_at_20_max value: 66.28882664176771 - type: nauc_precision_at_20_std value: 14.05415499533146 - type: nauc_precision_at_3_diff1 value: 65.55150000975934 - type: nauc_precision_at_3_max value: 63.631594870493636 - type: nauc_precision_at_3_std value: 5.057287295297996 - type: nauc_precision_at_5_diff1 value: 62.93787770906014 - type: nauc_precision_at_5_max value: 62.06285784899278 - type: nauc_precision_at_5_std value: 6.577948558011871 - type: nauc_recall_at_1000_diff1 value: .nan - type: nauc_recall_at_1000_max value: .nan - type: nauc_recall_at_1000_std value: .nan - type: nauc_recall_at_100_diff1 value: 68.6549129455701 - type: nauc_recall_at_100_max value: 80.36744109408454 - type: nauc_recall_at_100_std value: 70.92327126929207 - type: nauc_recall_at_10_diff1 value: 61.29162638094184 - type: nauc_recall_at_10_max value: 65.72649030765079 - type: nauc_recall_at_10_std value: 11.475487787481537 - type: nauc_recall_at_1_diff1 value: 74.59301032751448 - type: nauc_recall_at_1_max value: 59.251209223705935 - type: nauc_recall_at_1_std value: 6.536579330592454 - type: nauc_recall_at_20_diff1 value: 56.514783691254266 - type: nauc_recall_at_20_max value: 66.28882664176774 - type: nauc_recall_at_20_std value: 14.054154995331741 - type: nauc_recall_at_3_diff1 value: 65.55150000975928 - type: nauc_recall_at_3_max value: 63.63159487049364 - type: nauc_recall_at_3_std value: 5.05728729529798 - type: nauc_recall_at_5_diff1 value: 62.937877709060295 - type: nauc_recall_at_5_max value: 62.06285784899285 - type: nauc_recall_at_5_std value: 6.577948558011953 - type: ndcg_at_1 value: 60.778 - type: ndcg_at_10 value: 73.668 - type: ndcg_at_100 value: 76.21 - type: ndcg_at_1000 value: 76.459 - type: ndcg_at_20 value: 74.993 - type: ndcg_at_3 value: 70.00800000000001 - type: ndcg_at_5 value: 71.978 - type: precision_at_1 value: 60.778 - type: precision_at_10 value: 8.644 - type: precision_at_100 value: 0.9809999999999999 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.583 - type: precision_at_3 value: 25.480999999999998 - type: precision_at_5 value: 16.244 - type: recall_at_1 value: 60.778 - type: recall_at_10 value: 86.444 - type: recall_at_100 value: 98.111 - type: recall_at_1000 value: 100.0 - type: recall_at_20 value: 91.667 - type: recall_at_3 value: 76.444 - type: recall_at_5 value: 81.22200000000001 task: type: Retrieval - dataset: config: eng_Latn-hun_Latn name: MTEB BibleNLPBitextMining (eng_Latn-hun_Latn) revision: 264a18480c529d9e922483839b4b9758e690b762 split: train type: davidstap/biblenlp-corpus-mmteb metrics: - type: accuracy value: 88.671875 - type: f1 value: 85.859375 - type: main_score value: 85.859375 - type: precision value: 84.71354166666667 - type: recall value: 88.671875 task: type: BitextMining - dataset: config: hun_Latn-eng_Latn name: MTEB BibleNLPBitextMining (hun_Latn-eng_Latn) revision: 264a18480c529d9e922483839b4b9758e690b762 split: train type: davidstap/biblenlp-corpus-mmteb metrics: - type: accuracy value: 91.796875 - type: f1 value: 89.41406249999999 - type: main_score value: 89.41406249999999 - type: precision value: 88.31380208333334 - type: recall value: 91.796875 task: type: BitextMining - dataset: config: default name: MTEB HunSum2AbstractiveRetrieval (default) revision: 24e1445c8180d937f0a16f8ae8a62e77cc952e56 split: test type: SZTAKI-HLT/HunSum-2-abstractive metrics: - type: main_score value: 63.263000000000005 - type: map_at_1 value: 63.263000000000005 - type: map_at_10 value: 69.717 - type: map_at_100 value: 70.19999999999999 - type: map_at_1000 value: 70.223 - type: map_at_20 value: 69.987 - type: map_at_3 value: 68.126 - type: map_at_5 value: 69.11500000000001 - type: mrr_at_1 value: 63.263263263263255 - type: mrr_at_10 value: 69.71656179989505 - type: mrr_at_100 value: 70.20005091433352 - type: mrr_at_1000 value: 70.22300238535382 - type: mrr_at_20 value: 69.98650484718584 - type: mrr_at_3 value: 68.12645979312641 - type: mrr_at_5 value: 69.11494828161491 - type: nauc_map_at_1000_diff1 value: 78.57062147162597 - type: nauc_map_at_1000_max value: 67.50701502337495 - type: nauc_map_at_1000_std value: -0.5617129044803558 - type: nauc_map_at_100_diff1 value: 78.55994402867587 - type: nauc_map_at_100_max value: 67.50751346612932 - type: nauc_map_at_100_std value: -0.5527533150571393 - type: nauc_map_at_10_diff1 value: 78.40366721771652 - type: nauc_map_at_10_max value: 67.49241622659412 - type: nauc_map_at_10_std value: -0.48552097268197614 - type: nauc_map_at_1_diff1 value: 82.01486923813978 - type: nauc_map_at_1_max value: 65.96265600324601 - type: nauc_map_at_1_std value: -3.3920974069100702 - type: nauc_map_at_20_diff1 value: 78.47160921094391 - type: nauc_map_at_20_max value: 67.53010937556571 - type: nauc_map_at_20_std value: -0.5304810036230149 - type: nauc_map_at_3_diff1 value: 78.82728109994231 - type: nauc_map_at_3_max value: 67.67886259360823 - type: nauc_map_at_3_std value: -0.8390404611287001 - type: nauc_map_at_5_diff1 value: 78.64851152021848 - type: nauc_map_at_5_max value: 67.56443643847581 - type: nauc_map_at_5_std value: -0.5438994708241538 - type: nauc_mrr_at_1000_diff1 value: 78.57062147162597 - type: nauc_mrr_at_1000_max value: 67.50701502337495 - type: nauc_mrr_at_1000_std value: -0.5617129044803558 - type: nauc_mrr_at_100_diff1 value: 78.55994402867587 - type: nauc_mrr_at_100_max value: 67.50751346612932 - type: nauc_mrr_at_100_std value: -0.5527533150571393 - type: nauc_mrr_at_10_diff1 value: 78.40366721771652 - type: nauc_mrr_at_10_max value: 67.49241622659412 - type: nauc_mrr_at_10_std value: -0.48552097268197614 - type: nauc_mrr_at_1_diff1 value: 82.01486923813978 - type: nauc_mrr_at_1_max value: 65.96265600324601 - type: nauc_mrr_at_1_std value: -3.3920974069100702 - type: nauc_mrr_at_20_diff1 value: 78.47160921094391 - type: nauc_mrr_at_20_max value: 67.53010937556571 - type: nauc_mrr_at_20_std value: -0.5304810036230149 - type: nauc_mrr_at_3_diff1 value: 78.82728109994231 - type: nauc_mrr_at_3_max value: 67.67886259360823 - type: nauc_mrr_at_3_std value: -0.8390404611287001 - type: nauc_mrr_at_5_diff1 value: 78.64851152021848 - type: nauc_mrr_at_5_max value: 67.56443643847581 - type: nauc_mrr_at_5_std value: -0.5438994708241538 - type: nauc_ndcg_at_1000_diff1 value: 77.85313935589254 - type: nauc_ndcg_at_1000_max value: 67.79745016701565 - type: nauc_ndcg_at_1000_std value: 0.3743893992928968 - type: nauc_ndcg_at_100_diff1 value: 77.54895730138853 - type: nauc_ndcg_at_100_max value: 67.90017248869928 - type: nauc_ndcg_at_100_std value: 0.859162358234398 - type: nauc_ndcg_at_10_diff1 value: 76.71113405671676 - type: nauc_ndcg_at_10_max value: 67.96034182778398 - type: nauc_ndcg_at_10_std value: 1.1822837192182254 - type: nauc_ndcg_at_1_diff1 value: 82.01486923813978 - type: nauc_ndcg_at_1_max value: 65.96265600324601 - type: nauc_ndcg_at_1_std value: -3.3920974069100702 - type: nauc_ndcg_at_20_diff1 value: 76.93959621702203 - type: nauc_ndcg_at_20_max value: 68.11195662698223 - type: nauc_ndcg_at_20_std value: 1.04309687394849 - type: nauc_ndcg_at_3_diff1 value: 77.79565059957739 - type: nauc_ndcg_at_3_max value: 68.28729385816999 - type: nauc_ndcg_at_3_std value: 0.2325515867720005 - type: nauc_ndcg_at_5_diff1 value: 77.37740780039985 - type: nauc_ndcg_at_5_max value: 68.0591693716456 - type: nauc_ndcg_at_5_std value: 0.8419316054801026 - type: nauc_precision_at_1000_diff1 value: 70.06119288295852 - type: nauc_precision_at_1000_max value: 56.300969751588504 - type: nauc_precision_at_1000_std value: 42.8131104675957 - type: nauc_precision_at_100_diff1 value: 67.53252742986358 - type: nauc_precision_at_100_max value: 71.63984328411749 - type: nauc_precision_at_100_std value: 20.467710864542678 - type: nauc_precision_at_10_diff1 value: 68.62375685620702 - type: nauc_precision_at_10_max value: 70.02532507228068 - type: nauc_precision_at_10_std value: 9.35439782317633 - type: nauc_precision_at_1_diff1 value: 82.01486923813978 - type: nauc_precision_at_1_max value: 65.96265600324601 - type: nauc_precision_at_1_std value: -3.3920974069100702 - type: nauc_precision_at_20_diff1 value: 67.96187481073133 - type: nauc_precision_at_20_max value: 71.59854027319963 - type: nauc_precision_at_20_std value: 10.641909874113086 - type: nauc_precision_at_3_diff1 value: 74.38802810704372 - type: nauc_precision_at_3_max value: 70.31804260818862 - type: nauc_precision_at_3_std value: 3.8694413447531946 - type: nauc_precision_at_5_diff1 value: 72.53680275396366 - type: nauc_precision_at_5_max value: 69.84127154759457 - type: nauc_precision_at_5_std value: 6.232801743816592 - type: nauc_recall_at_1000_diff1 value: 70.06119288296337 - type: nauc_recall_at_1000_max value: 56.30096975158339 - type: nauc_recall_at_1000_std value: 42.81311046760523 - type: nauc_recall_at_100_diff1 value: 67.53252742986345 - type: nauc_recall_at_100_max value: 71.63984328411706 - type: nauc_recall_at_100_std value: 20.46771086454334 - type: nauc_recall_at_10_diff1 value: 68.62375685620707 - type: nauc_recall_at_10_max value: 70.02532507228068 - type: nauc_recall_at_10_std value: 9.354397823176459 - type: nauc_recall_at_1_diff1 value: 82.01486923813978 - type: nauc_recall_at_1_max value: 65.96265600324601 - type: nauc_recall_at_1_std value: -3.3920974069100702 - type: nauc_recall_at_20_diff1 value: 67.96187481073152 - type: nauc_recall_at_20_max value: 71.59854027319979 - type: nauc_recall_at_20_std value: 10.641909874113258 - type: nauc_recall_at_3_diff1 value: 74.3880281070437 - type: nauc_recall_at_3_max value: 70.31804260818865 - type: nauc_recall_at_3_std value: 3.8694413447530995 - type: nauc_recall_at_5_diff1 value: 72.53680275396374 - type: nauc_recall_at_5_max value: 69.84127154759464 - type: nauc_recall_at_5_std value: 6.232801743816686 - type: ndcg_at_1 value: 63.263000000000005 - type: ndcg_at_10 value: 72.89099999999999 - type: ndcg_at_100 value: 75.421 - type: ndcg_at_1000 value: 76.027 - type: ndcg_at_20 value: 73.919 - type: ndcg_at_3 value: 69.646 - type: ndcg_at_5 value: 71.434 - type: precision_at_1 value: 63.263000000000005 - type: precision_at_10 value: 8.288 - type: precision_at_100 value: 0.95 - type: precision_at_1000 value: 0.1 - type: precision_at_20 value: 4.352 - type: precision_at_3 value: 24.675 - type: precision_at_5 value: 15.676000000000002 - type: recall_at_1 value: 63.263000000000005 - type: recall_at_10 value: 82.883 - type: recall_at_100 value: 95.045 - type: recall_at_1000 value: 99.8 - type: recall_at_20 value: 87.03699999999999 - type: recall_at_3 value: 74.024 - type: recall_at_5 value: 78.378 task: type: Retrieval - dataset: config: hu name: MTEB MassiveIntentClassification (hu) revision: 4672e20407010da34463acc759c162ca9734bca6 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 60.08406186953599 - type: f1 value: 56.958742875652455 - type: f1_weighted value: 60.57068245324919 - type: main_score value: 60.08406186953599 task: type: Classification - dataset: config: hu name: MTEB MassiveIntentClassification (hu) revision: 4672e20407010da34463acc759c162ca9734bca6 split: validation type: mteb/amazon_massive_intent metrics: - type: accuracy value: 60.201672405312344 - type: f1 value: 57.03816512332761 - type: f1_weighted value: 60.53109947438201 - type: main_score value: 60.201672405312344 task: type: Classification - dataset: config: hu name: MTEB MassiveScenarioClassification (hu) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 66.61398789509079 - type: f1 value: 65.88647044935249 - type: f1_weighted value: 66.80145146976484 - type: main_score value: 66.61398789509079 task: type: Classification - dataset: config: hu name: MTEB MassiveScenarioClassification (hu) revision: fad2c6e8459f9e1c45d9315f4953d921437d70f8 split: validation type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 66.11411706837187 - type: f1 value: 65.76717397996951 - type: f1_weighted value: 66.29902597756885 - type: main_score value: 66.11411706837187 task: type: Classification - dataset: config: hu name: MTEB MultiEURLEXMultilabelClassification (hu) revision: 2aea5a6dc8fdcfeca41d0fb963c0a338930bde5c split: test type: mteb/eurlex-multilingual metrics: - type: accuracy value: 3.0839999999999996 - type: f1 value: 27.860225486785566 - type: lrap value: 43.02579150793552 - type: main_score value: 3.0839999999999996 task: type: MultilabelClassification - dataset: config: arb_Arab-hun_Latn name: MTEB NTREXBitextMining (arb_Arab-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 85.678517776665 - type: f1 value: 81.92049979731502 - type: main_score value: 81.92049979731502 - type: precision value: 80.21115005842097 - type: recall value: 85.678517776665 task: type: BitextMining - dataset: config: ben_Beng-hun_Latn name: MTEB NTREXBitextMining (ben_Beng-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 44.566850275413124 - type: f1 value: 39.07033025889276 - type: main_score value: 39.07033025889276 - type: precision value: 37.07348327291399 - type: recall value: 44.566850275413124 task: type: BitextMining - dataset: config: deu_Latn-hun_Latn name: MTEB NTREXBitextMining (deu_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 93.44016024036054 - type: f1 value: 91.61909530963112 - type: main_score value: 91.61909530963112 - type: precision value: 90.75279586045735 - type: recall value: 93.44016024036054 task: type: BitextMining - dataset: config: ell_Grek-hun_Latn name: MTEB NTREXBitextMining (ell_Grek-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 91.4371557336004 - type: f1 value: 89.0261582850466 - type: main_score value: 89.0261582850466 - type: precision value: 87.9043565348022 - type: recall value: 91.4371557336004 task: type: BitextMining - dataset: config: eng_Latn-hun_Latn name: MTEB NTREXBitextMining (eng_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 94.44166249374061 - type: f1 value: 92.8092138207311 - type: main_score value: 92.8092138207311 - type: precision value: 92.0422300116842 - type: recall value: 94.44166249374061 task: type: BitextMining - dataset: config: fas_Arab-hun_Latn name: MTEB NTREXBitextMining (fas_Arab-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 89.53430145217827 - type: f1 value: 86.72270310227245 - type: main_score value: 86.72270310227245 - type: precision value: 85.42814221331997 - type: recall value: 89.53430145217827 task: type: BitextMining - dataset: config: fin_Latn-hun_Latn name: MTEB NTREXBitextMining (fin_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 90.98647971957938 - type: f1 value: 88.44600233683859 - type: main_score value: 88.44600233683859 - type: precision value: 87.2575529961609 - type: recall value: 90.98647971957938 task: type: BitextMining - dataset: config: fra_Latn-hun_Latn name: MTEB NTREXBitextMining (fra_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 92.28843264897347 - type: f1 value: 90.12518778167251 - type: main_score value: 90.12518778167251 - type: precision value: 89.12535469871473 - type: recall value: 92.28843264897347 task: type: BitextMining - dataset: config: heb_Hebr-hun_Latn name: MTEB NTREXBitextMining (heb_Hebr-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 87.33099649474211 - type: f1 value: 83.88582874311467 - type: main_score value: 83.88582874311467 - type: precision value: 82.31263562009681 - type: recall value: 87.33099649474211 task: type: BitextMining - dataset: config: hin_Deva-hun_Latn name: MTEB NTREXBitextMining (hin_Deva-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 86.52979469203805 - type: f1 value: 83.08240137984755 - type: main_score value: 83.08240137984755 - type: precision value: 81.51352028042064 - type: recall value: 86.52979469203805 task: type: BitextMining - dataset: config: hun_Latn-arb_Arab name: MTEB NTREXBitextMining (hun_Latn-arb_Arab) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 86.73009514271406 - type: f1 value: 83.12397167179341 - type: main_score value: 83.12397167179341 - type: precision value: 81.47805040894676 - type: recall value: 86.73009514271406 task: type: BitextMining - dataset: config: hun_Latn-ben_Beng name: MTEB NTREXBitextMining (hun_Latn-ben_Beng) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 41.16174261392088 - type: f1 value: 32.73025519520262 - type: main_score value: 32.73025519520262 - type: precision value: 29.859172986363774 - type: recall value: 41.16174261392088 task: type: BitextMining - dataset: config: hun_Latn-deu_Latn name: MTEB NTREXBitextMining (hun_Latn-deu_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 93.39008512769153 - type: f1 value: 91.5456518110499 - type: main_score value: 91.5456518110499 - type: precision value: 90.66099148723085 - type: recall value: 93.39008512769153 task: type: BitextMining - dataset: config: hun_Latn-ell_Grek name: MTEB NTREXBitextMining (hun_Latn-ell_Grek) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 92.03805708562844 - type: f1 value: 89.81305291270239 - type: main_score value: 89.81305291270239 - type: precision value: 88.78317476214322 - type: recall value: 92.03805708562844 task: type: BitextMining - dataset: config: hun_Latn-eng_Latn name: MTEB NTREXBitextMining (hun_Latn-eng_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 94.74211316975463 - type: f1 value: 93.23985978968453 - type: main_score value: 93.23985978968453 - type: precision value: 92.51377065598398 - type: recall value: 94.74211316975463 task: type: BitextMining - dataset: config: hun_Latn-fas_Arab name: MTEB NTREXBitextMining (hun_Latn-fas_Arab) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 88.5327991987982 - type: f1 value: 85.49240527457853 - type: main_score value: 85.49240527457853 - type: precision value: 84.10413238905979 - type: recall value: 88.5327991987982 task: type: BitextMining - dataset: config: hun_Latn-fin_Latn name: MTEB NTREXBitextMining (hun_Latn-fin_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 90.23535302954431 - type: f1 value: 87.53296611584042 - type: main_score value: 87.53296611584042 - type: precision value: 86.26690035052579 - type: recall value: 90.23535302954431 task: type: BitextMining - dataset: config: hun_Latn-fra_Latn name: MTEB NTREXBitextMining (hun_Latn-fra_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 92.63895843765648 - type: f1 value: 90.47070605908863 - type: main_score value: 90.47070605908863 - type: precision value: 89.42163244867301 - type: recall value: 92.63895843765648 task: type: BitextMining - dataset: config: hun_Latn-heb_Hebr name: MTEB NTREXBitextMining (hun_Latn-heb_Hebr) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 86.62994491737606 - type: f1 value: 83.19388173168845 - type: main_score value: 83.19388173168845 - type: precision value: 81.65832081455517 - type: recall value: 86.62994491737606 task: type: BitextMining - dataset: config: hun_Latn-hin_Deva name: MTEB NTREXBitextMining (hun_Latn-hin_Deva) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 83.97596394591888 - type: f1 value: 79.85502062617736 - type: main_score value: 79.85502062617736 - type: precision value: 78.01758192844824 - type: recall value: 83.97596394591888 task: type: BitextMining - dataset: config: hun_Latn-ind_Latn name: MTEB NTREXBitextMining (hun_Latn-ind_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 92.68903355032549 - type: f1 value: 90.64596895343014 - type: main_score value: 90.64596895343014 - type: precision value: 89.68869971624103 - type: recall value: 92.68903355032549 task: type: BitextMining - dataset: config: hun_Latn-jpn_Jpan name: MTEB NTREXBitextMining (hun_Latn-jpn_Jpan) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 85.778668002003 - type: f1 value: 82.19829744616925 - type: main_score value: 82.19829744616925 - type: precision value: 80.62426973794025 - type: recall value: 85.778668002003 task: type: BitextMining - dataset: config: hun_Latn-kor_Hang name: MTEB NTREXBitextMining (hun_Latn-kor_Hang) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 84.17626439659489 - type: f1 value: 80.26746468909714 - type: main_score value: 80.26746468909714 - type: precision value: 78.5646097351155 - type: recall value: 84.17626439659489 task: type: BitextMining - dataset: config: hun_Latn-lav_Latn name: MTEB NTREXBitextMining (hun_Latn-lav_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 90.1352028042063 - type: f1 value: 87.30262059756302 - type: main_score value: 87.30262059756302 - type: precision value: 85.98731430479052 - type: recall value: 90.1352028042063 task: type: BitextMining - dataset: config: hun_Latn-lit_Latn name: MTEB NTREXBitextMining (hun_Latn-lit_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 89.58437656484726 - type: f1 value: 86.8252378567852 - type: main_score value: 86.8252378567852 - type: precision value: 85.54581872809214 - type: recall value: 89.58437656484726 task: type: BitextMining - dataset: config: hun_Latn-nld_Latn name: MTEB NTREXBitextMining (hun_Latn-nld_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 93.03955933900852 - type: f1 value: 91.03989317309296 - type: main_score value: 91.03989317309296 - type: precision value: 90.08930061759305 - type: recall value: 93.03955933900852 task: type: BitextMining - dataset: config: hun_Latn-pol_Latn name: MTEB NTREXBitextMining (hun_Latn-pol_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 91.58738107160741 - type: f1 value: 89.28225671841095 - type: main_score value: 89.28225671841095 - type: precision value: 88.18227341011517 - type: recall value: 91.58738107160741 task: type: BitextMining - dataset: config: hun_Latn-por_Latn name: MTEB NTREXBitextMining (hun_Latn-por_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 93.59038557836755 - type: f1 value: 91.71256885327992 - type: main_score value: 91.71256885327992 - type: precision value: 90.80287097312635 - type: recall value: 93.59038557836755 task: type: BitextMining - dataset: config: hun_Latn-rus_Cyrl name: MTEB NTREXBitextMining (hun_Latn-rus_Cyrl) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 91.3370055082624 - type: f1 value: 88.88916708395926 - type: main_score value: 88.88916708395926 - type: precision value: 87.75961561389704 - type: recall value: 91.3370055082624 task: type: BitextMining - dataset: config: hun_Latn-spa_Latn name: MTEB NTREXBitextMining (hun_Latn-spa_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 93.69053580370556 - type: f1 value: 91.94959105324652 - type: main_score value: 91.94959105324652 - type: precision value: 91.12418627941913 - type: recall value: 93.69053580370556 task: type: BitextMining - dataset: config: hun_Latn-swa_Latn name: MTEB NTREXBitextMining (hun_Latn-swa_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 35.803705558337505 - type: f1 value: 27.79832969518814 - type: main_score value: 27.79832969518814 - type: precision value: 25.370895920971037 - type: recall value: 35.803705558337505 task: type: BitextMining - dataset: config: hun_Latn-swe_Latn name: MTEB NTREXBitextMining (hun_Latn-swe_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 93.59038557836755 - type: f1 value: 91.66249374061091 - type: main_score value: 91.66249374061091 - type: precision value: 90.74445000834585 - type: recall value: 93.59038557836755 task: type: BitextMining - dataset: config: hun_Latn-tam_Taml name: MTEB NTREXBitextMining (hun_Latn-tam_Taml) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 27.391086629944915 - type: f1 value: 19.094552675413095 - type: main_score value: 19.094552675413095 - type: precision value: 16.88288208814635 - type: recall value: 27.391086629944915 task: type: BitextMining - dataset: config: hun_Latn-tur_Latn name: MTEB NTREXBitextMining (hun_Latn-tur_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 91.48723084626941 - type: f1 value: 89.11700884660323 - type: main_score value: 89.11700884660323 - type: precision value: 87.99031881155067 - type: recall value: 91.48723084626941 task: type: BitextMining - dataset: config: hun_Latn-vie_Latn name: MTEB NTREXBitextMining (hun_Latn-vie_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 91.13670505758637 - type: f1 value: 88.6696711734268 - type: main_score value: 88.6696711734268 - type: precision value: 87.49374061091638 - type: recall value: 91.13670505758637 task: type: BitextMining - dataset: config: hun_Latn-zho_Hant name: MTEB NTREXBitextMining (hun_Latn-zho_Hant) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 89.33400100150224 - type: f1 value: 86.55745523046474 - type: main_score value: 86.55745523046474 - type: precision value: 85.29794692038057 - type: recall value: 89.33400100150224 task: type: BitextMining - dataset: config: hun_Latn-zul_Latn name: MTEB NTREXBitextMining (hun_Latn-zul_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 16.675012518778168 - type: f1 value: 11.21636405139599 - type: main_score value: 11.21636405139599 - type: precision value: 9.903070059112947 - type: recall value: 16.675012518778168 task: type: BitextMining - dataset: config: ind_Latn-hun_Latn name: MTEB NTREXBitextMining (ind_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 92.93940911367051 - type: f1 value: 90.96478050408946 - type: main_score value: 90.96478050408946 - type: precision value: 90.03922550492406 - type: recall value: 92.93940911367051 task: type: BitextMining - dataset: config: jpn_Jpan-hun_Latn name: MTEB NTREXBitextMining (jpn_Jpan-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 88.28242363545317 - type: f1 value: 85.11433817392756 - type: main_score value: 85.11433817392756 - type: precision value: 83.67551326990485 - type: recall value: 88.28242363545317 task: type: BitextMining - dataset: config: kor_Hang-hun_Latn name: MTEB NTREXBitextMining (kor_Hang-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 85.778668002003 - type: f1 value: 81.83608746453012 - type: main_score value: 81.83608746453012 - type: precision value: 80.0233683859122 - type: recall value: 85.778668002003 task: type: BitextMining - dataset: config: lav_Latn-hun_Latn name: MTEB NTREXBitextMining (lav_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 91.73760640961443 - type: f1 value: 89.42914371557336 - type: main_score value: 89.42914371557336 - type: precision value: 88.32832582206642 - type: recall value: 91.73760640961443 task: type: BitextMining - dataset: config: lit_Latn-hun_Latn name: MTEB NTREXBitextMining (lit_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 91.78768152228342 - type: f1 value: 89.50926389584376 - type: main_score value: 89.50926389584376 - type: precision value: 88.39926556501419 - type: recall value: 91.78768152228342 task: type: BitextMining - dataset: config: nld_Latn-hun_Latn name: MTEB NTREXBitextMining (nld_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 93.49023535302955 - type: f1 value: 91.6190953096311 - type: main_score value: 91.6190953096311 - type: precision value: 90.72775830412286 - type: recall value: 93.49023535302955 task: type: BitextMining - dataset: config: pol_Latn-hun_Latn name: MTEB NTREXBitextMining (pol_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 91.28693039559339 - type: f1 value: 88.99515940577533 - type: main_score value: 88.99515940577533 - type: precision value: 87.9293940911367 - type: recall value: 91.28693039559339 task: type: BitextMining - dataset: config: por_Latn-hun_Latn name: MTEB NTREXBitextMining (por_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 93.03955933900852 - type: f1 value: 91.08496077449509 - type: main_score value: 91.08496077449509 - type: precision value: 90.17860123518612 - type: recall value: 93.03955933900852 task: type: BitextMining - dataset: config: rus_Cyrl-hun_Latn name: MTEB NTREXBitextMining (rus_Cyrl-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 90.98647971957938 - type: f1 value: 88.43932565514937 - type: main_score value: 88.43932565514937 - type: precision value: 87.2475379736271 - type: recall value: 90.98647971957938 task: type: BitextMining - dataset: config: spa_Latn-hun_Latn name: MTEB NTREXBitextMining (spa_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 93.23985978968453 - type: f1 value: 91.3386746786847 - type: main_score value: 91.3386746786847 - type: precision value: 90.43148055416457 - type: recall value: 93.23985978968453 task: type: BitextMining - dataset: config: swa_Latn-hun_Latn name: MTEB NTREXBitextMining (swa_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 35.95393089634452 - type: f1 value: 30.612257939034187 - type: main_score value: 30.612257939034187 - type: precision value: 28.995078568906944 - type: recall value: 35.95393089634452 task: type: BitextMining - dataset: config: swe_Latn-hun_Latn name: MTEB NTREXBitextMining (swe_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 93.64046069103655 - type: f1 value: 91.86613253213153 - type: main_score value: 91.86613253213153 - type: precision value: 91.04072775830413 - type: recall value: 93.64046069103655 task: type: BitextMining - dataset: config: tam_Taml-hun_Latn name: MTEB NTREXBitextMining (tam_Taml-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 29.04356534802203 - type: f1 value: 25.164093122029808 - type: main_score value: 25.164093122029808 - type: precision value: 23.849573878565543 - type: recall value: 29.04356534802203 task: type: BitextMining - dataset: config: tur_Latn-hun_Latn name: MTEB NTREXBitextMining (tur_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 90.83625438157236 - type: f1 value: 88.36087464530128 - type: main_score value: 88.36087464530128 - type: precision value: 87.19829744616925 - type: recall value: 90.83625438157236 task: type: BitextMining - dataset: config: vie_Latn-hun_Latn name: MTEB NTREXBitextMining (vie_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 90.68602904356536 - type: f1 value: 88.10882991153397 - type: main_score value: 88.10882991153397 - type: precision value: 86.90118511099983 - type: recall value: 90.68602904356536 task: type: BitextMining - dataset: config: zho_Hant-hun_Latn name: MTEB NTREXBitextMining (zho_Hant-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 90.1352028042063 - type: f1 value: 87.46035720247039 - type: main_score value: 87.46035720247039 - type: precision value: 86.19810668383528 - type: recall value: 90.1352028042063 task: type: BitextMining - dataset: config: zul_Latn-hun_Latn name: MTEB NTREXBitextMining (zul_Latn-hun_Latn) revision: ed9a4403ed4adbfaf4aab56d5b2709e9f6c3ba33 split: test type: mteb/NTREX metrics: - type: accuracy value: 17.1256885327992 - type: f1 value: 13.692538409811572 - type: main_score value: 13.692538409811572 - type: precision value: 12.811084017018844 - type: recall value: 17.1256885327992 task: type: BitextMining - dataset: config: rom-hun name: MTEB RomaTalesBitextMining (rom-hun) revision: f4394dbca6845743cd33eba77431767b232ef489 split: test type: kardosdrur/roma-tales metrics: - type: accuracy value: 6.046511627906977 - type: f1 value: 2.950830564784053 - type: main_score value: 2.950830564784053 - type: precision value: 2.295127353266888 - type: recall value: 6.046511627906977 task: type: BitextMining - dataset: config: hun_Latn name: MTEB SIB200Classification (hun_Latn) revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b split: test type: mteb/sib200 metrics: - type: accuracy value: 72.74509803921569 - type: f1 value: 71.6748881571977 - type: f1_weighted value: 72.7699432186266 - type: main_score value: 72.74509803921569 task: type: Classification - dataset: config: hun_Latn name: MTEB SIB200Classification (hun_Latn) revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b split: train type: mteb/sib200 metrics: - type: accuracy value: 71.92582025677605 - type: f1 value: 70.9175403606058 - type: f1_weighted value: 71.9988920000764 - type: main_score value: 71.92582025677605 task: type: Classification - dataset: config: hun_Latn name: MTEB SIB200Classification (hun_Latn) revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b split: validation type: mteb/sib200 metrics: - type: accuracy value: 66.76767676767676 - type: f1 value: 66.07599012119566 - type: f1_weighted value: 67.15823510190054 - type: main_score value: 66.76767676767676 task: type: Classification - dataset: config: hun_Latn name: MTEB SIB200ClusteringS2S (hun_Latn) revision: a74d7350ea12af010cfb1c21e34f1f81fd2e615b split: test type: mteb/sib200 metrics: - type: main_score value: 39.24288169703154 - type: v_measure value: 39.24288169703154 - type: v_measure_std value: 2.214708184335194 task: type: Clustering - dataset: config: hun-eng name: MTEB Tatoeba (hun-eng) revision: 69e8f12da6e31d59addadda9a9c8a2e601a0e282 split: test type: mteb/tatoeba-bitext-mining metrics: - type: accuracy value: 91.0 - type: f1 value: 88.47999999999999 - type: main_score value: 88.47999999999999 - type: precision value: 87.3 - type: recall value: 91.0 task: type: BitextMining tags: - mteb --- base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 language: - hu library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy - dot_accuracy - manhattan_accuracy - euclidean_accuracy - max_accuracy pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:857856 - loss:MultipleNegativesRankingLoss widget: - source_sentence: Emberek várnak a lámpánál kerékpárral. sentences: - Az emberek piros lámpánál haladnak. - Az emberek a kerékpárjukon vannak. - Egy fekete kutya úszik a vízben egy teniszlabdával a szájában - source_sentence: A kutya a vízben van. sentences: - Két férfi takarítja a havat a tetőről, az egyik egy emelőben ül, a másik pedig a tetőn. - A macska a vízben van, és dühös. - Egy kutya van a vízben, a szájában egy faág. - source_sentence: A nő feketét visel. sentences: - Egy barna kutya fröcsköl, ahogy úszik a vízben. - Egy tetoválással rendelkező nő, aki fekete tank tetején néz a földre. - 'Egy kékbe öltözött nő intenzív arckifejezéssel üti a teniszlabdát. A képen:' - source_sentence: Az emberek alszanak. sentences: - Három ember beszélget egy városi utcán. - A nő fehéret visel. - Egy apa és a fia ölelgeti alvás közben. - source_sentence: Az emberek alszanak. sentences: - Egy feketébe öltözött nő cigarettát és bevásárlótáskát tart a kezében, miközben egy idősebb nő átmegy az utcán. - Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős elmosódás tesz kivehetetlenné. - Egy apa és a fia ölelgeti alvás közben. model-index: - name: paraphrase-multilingual-MiniLM-L12-hu-v1 results: - task: type: triplet name: Triplet dataset: name: all nli dev type: all-nli-dev metrics: - type: cosine_accuracy value: 0.992 name: Cosine Accuracy - type: dot_accuracy value: 0.0108 name: Dot Accuracy - type: manhattan_accuracy value: 0.9908 name: Manhattan Accuracy - type: euclidean_accuracy value: 0.9908 name: Euclidean Accuracy - type: max_accuracy value: 0.992 name: Max Accuracy - task: type: triplet name: Triplet dataset: name: all nli test type: all-nli-test metrics: - type: cosine_accuracy value: 0.9913636363636363 name: Cosine Accuracy - type: dot_accuracy value: 0.013939393939393939 name: Dot Accuracy - type: manhattan_accuracy value: 0.990909090909091 name: Manhattan Accuracy - type: euclidean_accuracy value: 0.9910606060606061 name: Euclidean Accuracy - type: max_accuracy value: 0.9913636363636363 name: Max Accuracy # paraphrase-multilingual-MiniLM-L12-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the train dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - train - **Language:** hu - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("karsar/paraphrase-multilingual-MiniLM-L12-hu_v1") # Run inference sentences = [ 'Az emberek alszanak.', 'Egy apa és a fia ölelgeti alvás közben.', 'Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős elmosódás tesz kivehetetlenné.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Triplet * Dataset: `all-nli-dev` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:----------| | cosine_accuracy | 0.992 | | dot_accuracy | 0.0108 | | manhattan_accuracy | 0.9908 | | euclidean_accuracy | 0.9908 | | **max_accuracy** | **0.992** | #### Triplet * Dataset: `all-nli-test` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:-----------| | cosine_accuracy | 0.9914 | | dot_accuracy | 0.0139 | | manhattan_accuracy | 0.9909 | | euclidean_accuracy | 0.9911 | | **max_accuracy** | **0.9914** | ## Training Details ### Training Dataset #### train * Dataset: train * Size: 857,856 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------------------|:----------------------------------------------|:---------------------------------------------------------------| | Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett. | Egy ember a szabadban, lóháton. | Egy ember egy étteremben van, és omlettet rendel. | | Gyerekek mosolyogva és integetett a kamera | Gyermekek vannak jelen | A gyerekek homlokot rántanak | | Egy fiú ugrál a gördeszkát a közepén egy piros híd. | A fiú gördeszkás trükköt csinál. | A fiú korcsolyázik a járdán. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### train * Dataset: train * Size: 5,000 evaluation samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------------------|:----------------------------------------------|:---------------------------------------------------------------| | Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett. | Egy ember a szabadban, lóháton. | Egy ember egy étteremben van, és omlettet rendel. | | Gyerekek mosolyogva és integetett a kamera | Gyermekek vannak jelen | A gyerekek homlokot rántanak | | Egy fiú ugrál a gördeszkát a közepén egy piros híd. | A fiú gördeszkás trükköt csinál. | A fiú korcsolyázik a járdán. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | train loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy | |:------:|:----:|:-------------:|:----------:|:------------------------:|:-------------------------:| | 0 | 0 | - | - | 0.7574 | - | | 0.0149 | 100 | 2.5002 | - | - | - | | 0.0298 | 200 | 1.9984 | - | - | - | | 0.0448 | 300 | 1.8094 | - | - | - | | 0.0597 | 400 | 1.6704 | - | - | - | | 0.0746 | 500 | 1.5518 | - | - | - | | 0.0895 | 600 | 1.449 | - | - | - | | 0.1044 | 700 | 1.5998 | - | - | - | | 0.1194 | 800 | 1.5725 | - | - | - | | 0.1343 | 900 | 1.5341 | - | - | - | | 0.1492 | 1000 | 1.3423 | - | - | - | | 0.1641 | 1100 | 1.2485 | - | - | - | | 0.1791 | 1200 | 1.1527 | - | - | - | | 0.1940 | 1300 | 1.1672 | - | - | - | | 0.2089 | 1400 | 1.2426 | - | - | - | | 0.2238 | 1500 | 1.0948 | - | - | - | | 0.2387 | 1600 | 1.0069 | - | - | - | | 0.2537 | 1700 | 0.976 | - | - | - | | 0.2686 | 1800 | 0.897 | - | - | - | | 0.2835 | 1900 | 0.7825 | - | - | - | | 0.2984 | 2000 | 0.9421 | 0.1899 | 0.9568 | - | | 0.3133 | 2100 | 0.8651 | - | - | - | | 0.3283 | 2200 | 0.8184 | - | - | - | | 0.3432 | 2300 | 0.699 | - | - | - | | 0.3581 | 2400 | 0.6704 | - | - | - | | 0.3730 | 2500 | 0.6477 | - | - | - | | 0.3879 | 2600 | 0.7077 | - | - | - | | 0.4029 | 2700 | 0.7364 | - | - | - | | 0.4178 | 2800 | 0.665 | - | - | - | | 0.4327 | 2900 | 1.2512 | - | - | - | | 0.4476 | 3000 | 1.3693 | - | - | - | | 0.4625 | 3100 | 1.3959 | - | - | - | | 0.4775 | 3200 | 1.4175 | - | - | - | | 0.4924 | 3300 | 1.402 | - | - | - | | 0.5073 | 3400 | 1.3832 | - | - | - | | 0.5222 | 3500 | 1.3671 | - | - | - | | 0.5372 | 3600 | 1.3666 | - | - | - | | 0.5521 | 3700 | 1.3479 | - | - | - | | 0.5670 | 3800 | 1.3272 | - | - | - | | 0.5819 | 3900 | 1.3353 | - | - | - | | 0.5968 | 4000 | 1.3177 | 0.0639 | 0.9902 | - | | 0.6118 | 4100 | 1.3068 | - | - | - | | 0.6267 | 4200 | 1.3054 | - | - | - | | 0.6416 | 4300 | 1.3098 | - | - | - | | 0.6565 | 4400 | 1.2839 | - | - | - | | 0.6714 | 4500 | 1.2976 | - | - | - | | 0.6864 | 4600 | 1.2669 | - | - | - | | 0.7013 | 4700 | 1.208 | - | - | - | | 0.7162 | 4800 | 1.194 | - | - | - | | 0.7311 | 4900 | 1.1974 | - | - | - | | 0.7460 | 5000 | 1.1834 | - | - | - | | 0.7610 | 5100 | 1.1876 | - | - | - | | 0.7759 | 5200 | 1.1743 | - | - | - | | 0.7908 | 5300 | 1.1839 | - | - | - | | 0.8057 | 5400 | 1.1778 | - | - | - | | 0.8207 | 5500 | 1.1711 | - | - | - | | 0.8356 | 5600 | 1.1809 | - | - | - | | 0.8505 | 5700 | 1.1825 | - | - | - | | 0.8654 | 5800 | 1.1795 | - | - | - | | 0.8803 | 5900 | 1.1788 | - | - | - | | 0.8953 | 6000 | 1.1819 | 0.0371 | 0.992 | - | | 0.9102 | 6100 | 1.1741 | - | - | - | | 0.9251 | 6200 | 1.1871 | - | - | - | | 0.9400 | 6300 | 0.498 | - | - | - | | 0.9549 | 6400 | 0.093 | - | - | - | | 0.9699 | 6500 | 0.1597 | - | - | - | | 0.9848 | 6600 | 0.2033 | - | - | - | | 0.9997 | 6700 | 0.16 | - | - | - | | 1.0 | 6702 | - | - | - | 0.9914 | ### Framework Versions - Python: 3.11.8 - Sentence Transformers: 3.1.1 - Transformers: 4.44.0 - PyTorch: 2.3.0.post101 - Accelerate: 0.33.0 - Datasets: 2.18.0 - Tokenizers: 0.19.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ---