File size: 8,155 Bytes
a78154a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
---
title: Diffusion Models - Complete DDPM Implementation
emoji: 🌊
colorFrom: purple
colorTo: pink
sdk: pytorch
app_file: "Diffusion Models.ipynb"
pinned: false
license: mit
tags:
- deep-learning
- generative-ai
- pytorch
- diffusion-models
- ddpm
- denoising
- generative-modeling
- computer-vision
- unsupervised-learning
datasets:
- synthetic-2d-data
---

# Diffusion Models: Complete DDPM Implementation

A comprehensive PyTorch implementation of Denoising Diffusion Probabilistic Models (DDPM) with detailed mathematical foundations and educational content.

## Model Description

This repository contains a complete implementation of Diffusion Models (DDPM) trained on 2D synthetic datasets. The model learns to generate new data points by mastering the art of noise removal through a reverse diffusion process. This implementation serves as both a working model and an educational resource for understanding the mathematics and implementation of diffusion models.

### Architecture Details

- **Model Type**: Denoising Diffusion Probabilistic Model (DDPM)
- **Framework**: PyTorch
- **Input**: 2D point coordinates
- **Diffusion Steps**: 1000 timesteps
- **Hidden Dimensions**: 256 units with SiLU activations
- **Time Embedding**: 64-dimensional rich representations
- **Total Parameters**: ~130K
- **Model Size**: 1.8MB

### Key Components

1. **Noise Predictor Network**: Neural network that predicts noise ε_θ(x_t, t)
2. **Forward Diffusion Process**: Gradually adds Gaussian noise over T steps
3. **Reverse Diffusion Process**: Iteratively removes noise to generate samples
4. **Time Embedding Module**: Converts timesteps to rich feature representations

## Training Details

- **Dataset**: Synthetic 2D point clusters
- **Diffusion Steps**: 1000
- **Beta Schedule**: Linear (0.0001 to 0.02)
- **Optimizer**: AdamW with cosine annealing
- **Learning Rate**: 0.001
- **Training Epochs**: 2000
- **Batch Processing**: Dynamic batching for efficient training

## Mathematical Foundation

### Forward Process
The forward process adds noise according to:
```
q(x_t | x_{t-1}) = N(x_t; √(1-β_t) x_{t-1}, β_t I)
```

With direct sampling:
```
x_t = √ᾱ_t x_0 + √(1-ᾱ_t) ε
```

### Reverse Process
The model learns to reverse noise:
```
p_θ(x_{t-1} | x_t) = N(x_{t-1}; μ_θ(x_t, t), Σ_θ(x_t, t))
```

### Loss Function
Trained by minimizing noise prediction error:
```
L = E[||ε - ε_θ(x_t, t)||²]
```

## Model Performance

### Training Metrics
- **Final Training Loss**: Converged to stable low values
- **Training Time**: ~30 minutes on GPU
- **Memory Usage**: <500MB GPU memory
- **Convergence**: Stable training without mode collapse

### Capabilities
- ✅ High-quality 2D point generation
- ✅ Smooth interpolation in data space
- ✅ Stable training without adversarial dynamics
- ✅ Mathematically grounded approach
- ✅ Excellent sample diversity

## Usage

### Quick Start

```python
import torch
import torch.nn as nn
import matplotlib.pyplot as plt

# Load the model components (full implementation in notebook)
class NoisePredictor(nn.Module):
    def __init__(self, data_dim=2, hidden_dim=256, time_embed_dim=64):
        super(NoisePredictor, self).__init__()
        # ... (complete implementation in notebook)
    
    def forward(self, x, t):
        # ... (complete implementation in notebook)
        return noise_prediction

class DiffusionModel:
    def __init__(self, T=1000, beta_start=0.0001, beta_end=0.02):
        # ... (complete implementation in notebook)
    
    def sample(self, n_samples=100):
        # Generate new samples from pure noise
        # ... (complete implementation in notebook)
        return generated_samples

# Load trained model
model = DiffusionModel()
# Load weights: model.model.load_state_dict(torch.load('diffusion_model_complete.pth'))

# Generate new samples
samples = model.sample(n_samples=100)
plt.scatter(samples[:, 0], samples[:, 1])
plt.title("Generated 2D Points")
plt.show()
```

### Advanced Usage

```python
# Visualize the diffusion process
model.visualize_diffusion_process()

# Monitor training progress
model.plot_training_curves()

# Sample with different parameters
high_quality_samples = model.sample(n_samples=500, guidance_scale=1.0)
```

## Visualizations Available

1. **Diffusion Process**: Step-by-step noise addition and removal
2. **Training Curves**: Loss evolution and learning dynamics
3. **Generated Samples**: Comparison with original data distribution
4. **Sampling Process**: Real-time generation visualization
5. **Parameter Analysis**: Beta schedule and noise analysis

## Files and Outputs

- `Diffusion Models.ipynb`: Complete implementation with educational content
- `diffusion_model_complete.pth`: Trained model weights
- `diffusion_process.png`: Visualization of forward and reverse processes
- `diffusion_results.png`: Generated samples and quality assessment
- `training_metrics.png`: Comprehensive training analytics
- `diffusion_logs/`: Detailed training and sampling logs

## Applications

This diffusion model implementation can be adapted for:

- **Image Generation**: Extend to pixel-based image synthesis
- **Audio Synthesis**: Apply to waveform or spectrogram generation
- **3D Point Clouds**: Generate 3D shapes and objects
- **Time Series**: Financial data, sensor readings, weather patterns
- **Scientific Data**: Molecular structures, particle physics
- **Data Augmentation**: Synthetic training data creation

## Educational Value

This implementation is designed as a learning resource featuring:

- **Complete Mathematical Derivations**: From first principles to implementation
- **Step-by-Step Explanations**: Every component explained in detail
- **Visual Learning**: Rich plots and animations for understanding
- **Progressive Complexity**: Build understanding gradually
- **Practical Implementation**: Real working code with best practices

## Research Applications

The model demonstrates key concepts in:

- **Generative Modeling**: Alternative to GANs and VAEs
- **Probability Theory**: Markov chains and stochastic processes
- **Neural Network Architecture**: Time conditioning and embeddings
- **Optimization**: Stable training of generative models
- **Sampling Methods**: DDPM and potential DDIM extensions

## Comparison with Other Generative Models

### Advantages over GANs
- ✅ Stable training (no adversarial dynamics)
- ✅ No mode collapse
- ✅ Mathematical foundation
- ✅ High-quality samples

### Advantages over VAEs
- ✅ Higher sample quality
- ✅ No posterior collapse
- ✅ Better likelihood estimates
- ✅ Flexible architectures

### Trade-offs
- ⚠️ Slower sampling (requires multiple steps)
- ⚠️ More computationally intensive
- ⚠️ Memory requirements for long sequences

## Citation

If you use this implementation in your research or projects, please cite:

```bibtex
@misc{ddpm_implementation_2024,
  title={Complete DDPM Implementation: Educational Diffusion Models},
  author={Gruhesh Kurra},
  year={2024},
  url={https://huggingface.co/karthik-2905/DiffusionModels}
}
```

## Future Extensions

Planned improvements and extensions:

- 🔄 **DDIM Implementation**: Faster sampling with deterministic steps
- 🎨 **Conditional Generation**: Text-guided or class-conditional generation
- 📊 **Alternative Schedules**: Cosine and sigmoid beta schedules
- 🖼️ **Image Diffusion**: Extension to CIFAR-10 and other image datasets
- 🎵 **Audio Applications**: Waveform and spectrogram generation
- 🧬 **Scientific Applications**: Molecular and protein structure generation

## License

This project is licensed under the MIT License - see the LICENSE file for details.

## Additional Resources

- **GitHub Repository**: [DiffusionModels](https://github.com/GruheshKurra/DiffusionModels)
- **Detailed Notebook**: Complete implementation with educational content
- **Training Logs**: Comprehensive metrics and analysis

## Model Card Authors

**Gruhesh Kurra** - Implementation, documentation, and educational content

---

**Tags**: diffusion-models, generative-ai, pytorch, ddpm, deep-learning, denoising

**Model Card Last Updated**: December 2024