File size: 8,155 Bytes
a78154a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
---
title: Diffusion Models - Complete DDPM Implementation
emoji: 🌊
colorFrom: purple
colorTo: pink
sdk: pytorch
app_file: "Diffusion Models.ipynb"
pinned: false
license: mit
tags:
- deep-learning
- generative-ai
- pytorch
- diffusion-models
- ddpm
- denoising
- generative-modeling
- computer-vision
- unsupervised-learning
datasets:
- synthetic-2d-data
---
# Diffusion Models: Complete DDPM Implementation
A comprehensive PyTorch implementation of Denoising Diffusion Probabilistic Models (DDPM) with detailed mathematical foundations and educational content.
## Model Description
This repository contains a complete implementation of Diffusion Models (DDPM) trained on 2D synthetic datasets. The model learns to generate new data points by mastering the art of noise removal through a reverse diffusion process. This implementation serves as both a working model and an educational resource for understanding the mathematics and implementation of diffusion models.
### Architecture Details
- **Model Type**: Denoising Diffusion Probabilistic Model (DDPM)
- **Framework**: PyTorch
- **Input**: 2D point coordinates
- **Diffusion Steps**: 1000 timesteps
- **Hidden Dimensions**: 256 units with SiLU activations
- **Time Embedding**: 64-dimensional rich representations
- **Total Parameters**: ~130K
- **Model Size**: 1.8MB
### Key Components
1. **Noise Predictor Network**: Neural network that predicts noise ε_θ(x_t, t)
2. **Forward Diffusion Process**: Gradually adds Gaussian noise over T steps
3. **Reverse Diffusion Process**: Iteratively removes noise to generate samples
4. **Time Embedding Module**: Converts timesteps to rich feature representations
## Training Details
- **Dataset**: Synthetic 2D point clusters
- **Diffusion Steps**: 1000
- **Beta Schedule**: Linear (0.0001 to 0.02)
- **Optimizer**: AdamW with cosine annealing
- **Learning Rate**: 0.001
- **Training Epochs**: 2000
- **Batch Processing**: Dynamic batching for efficient training
## Mathematical Foundation
### Forward Process
The forward process adds noise according to:
```
q(x_t | x_{t-1}) = N(x_t; √(1-β_t) x_{t-1}, β_t I)
```
With direct sampling:
```
x_t = √ᾱ_t x_0 + √(1-ᾱ_t) ε
```
### Reverse Process
The model learns to reverse noise:
```
p_θ(x_{t-1} | x_t) = N(x_{t-1}; μ_θ(x_t, t), Σ_θ(x_t, t))
```
### Loss Function
Trained by minimizing noise prediction error:
```
L = E[||ε - ε_θ(x_t, t)||²]
```
## Model Performance
### Training Metrics
- **Final Training Loss**: Converged to stable low values
- **Training Time**: ~30 minutes on GPU
- **Memory Usage**: <500MB GPU memory
- **Convergence**: Stable training without mode collapse
### Capabilities
- ✅ High-quality 2D point generation
- ✅ Smooth interpolation in data space
- ✅ Stable training without adversarial dynamics
- ✅ Mathematically grounded approach
- ✅ Excellent sample diversity
## Usage
### Quick Start
```python
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
# Load the model components (full implementation in notebook)
class NoisePredictor(nn.Module):
def __init__(self, data_dim=2, hidden_dim=256, time_embed_dim=64):
super(NoisePredictor, self).__init__()
# ... (complete implementation in notebook)
def forward(self, x, t):
# ... (complete implementation in notebook)
return noise_prediction
class DiffusionModel:
def __init__(self, T=1000, beta_start=0.0001, beta_end=0.02):
# ... (complete implementation in notebook)
def sample(self, n_samples=100):
# Generate new samples from pure noise
# ... (complete implementation in notebook)
return generated_samples
# Load trained model
model = DiffusionModel()
# Load weights: model.model.load_state_dict(torch.load('diffusion_model_complete.pth'))
# Generate new samples
samples = model.sample(n_samples=100)
plt.scatter(samples[:, 0], samples[:, 1])
plt.title("Generated 2D Points")
plt.show()
```
### Advanced Usage
```python
# Visualize the diffusion process
model.visualize_diffusion_process()
# Monitor training progress
model.plot_training_curves()
# Sample with different parameters
high_quality_samples = model.sample(n_samples=500, guidance_scale=1.0)
```
## Visualizations Available
1. **Diffusion Process**: Step-by-step noise addition and removal
2. **Training Curves**: Loss evolution and learning dynamics
3. **Generated Samples**: Comparison with original data distribution
4. **Sampling Process**: Real-time generation visualization
5. **Parameter Analysis**: Beta schedule and noise analysis
## Files and Outputs
- `Diffusion Models.ipynb`: Complete implementation with educational content
- `diffusion_model_complete.pth`: Trained model weights
- `diffusion_process.png`: Visualization of forward and reverse processes
- `diffusion_results.png`: Generated samples and quality assessment
- `training_metrics.png`: Comprehensive training analytics
- `diffusion_logs/`: Detailed training and sampling logs
## Applications
This diffusion model implementation can be adapted for:
- **Image Generation**: Extend to pixel-based image synthesis
- **Audio Synthesis**: Apply to waveform or spectrogram generation
- **3D Point Clouds**: Generate 3D shapes and objects
- **Time Series**: Financial data, sensor readings, weather patterns
- **Scientific Data**: Molecular structures, particle physics
- **Data Augmentation**: Synthetic training data creation
## Educational Value
This implementation is designed as a learning resource featuring:
- **Complete Mathematical Derivations**: From first principles to implementation
- **Step-by-Step Explanations**: Every component explained in detail
- **Visual Learning**: Rich plots and animations for understanding
- **Progressive Complexity**: Build understanding gradually
- **Practical Implementation**: Real working code with best practices
## Research Applications
The model demonstrates key concepts in:
- **Generative Modeling**: Alternative to GANs and VAEs
- **Probability Theory**: Markov chains and stochastic processes
- **Neural Network Architecture**: Time conditioning and embeddings
- **Optimization**: Stable training of generative models
- **Sampling Methods**: DDPM and potential DDIM extensions
## Comparison with Other Generative Models
### Advantages over GANs
- ✅ Stable training (no adversarial dynamics)
- ✅ No mode collapse
- ✅ Mathematical foundation
- ✅ High-quality samples
### Advantages over VAEs
- ✅ Higher sample quality
- ✅ No posterior collapse
- ✅ Better likelihood estimates
- ✅ Flexible architectures
### Trade-offs
- ⚠️ Slower sampling (requires multiple steps)
- ⚠️ More computationally intensive
- ⚠️ Memory requirements for long sequences
## Citation
If you use this implementation in your research or projects, please cite:
```bibtex
@misc{ddpm_implementation_2024,
title={Complete DDPM Implementation: Educational Diffusion Models},
author={Gruhesh Kurra},
year={2024},
url={https://huggingface.co/karthik-2905/DiffusionModels}
}
```
## Future Extensions
Planned improvements and extensions:
- 🔄 **DDIM Implementation**: Faster sampling with deterministic steps
- 🎨 **Conditional Generation**: Text-guided or class-conditional generation
- 📊 **Alternative Schedules**: Cosine and sigmoid beta schedules
- 🖼️ **Image Diffusion**: Extension to CIFAR-10 and other image datasets
- 🎵 **Audio Applications**: Waveform and spectrogram generation
- 🧬 **Scientific Applications**: Molecular and protein structure generation
## License
This project is licensed under the MIT License - see the LICENSE file for details.
## Additional Resources
- **GitHub Repository**: [DiffusionModels](https://github.com/GruheshKurra/DiffusionModels)
- **Detailed Notebook**: Complete implementation with educational content
- **Training Logs**: Comprehensive metrics and analysis
## Model Card Authors
**Gruhesh Kurra** - Implementation, documentation, and educational content
---
**Tags**: diffusion-models, generative-ai, pytorch, ddpm, deep-learning, denoising
**Model Card Last Updated**: December 2024 |