|
import gradio as gr
|
|
import joblib
|
|
|
|
|
|
models = {
|
|
"Logistic Regression": joblib.load("models/best_model.joblib"),
|
|
"Random Forest": joblib.load("models/random_forest_model.joblib"),
|
|
"KNN": joblib.load("models/trained_knn_model.joblib"),
|
|
}
|
|
|
|
|
|
vectorizer = joblib.load("models/vectorizer.joblib")
|
|
|
|
|
|
def predict_sentiment(review, model_name):
|
|
|
|
processed_review = vectorizer.transform([review])
|
|
|
|
|
|
model = models[model_name]
|
|
|
|
|
|
predicted_class = model.predict(processed_review)[0]
|
|
probabilities = model.predict_proba(processed_review)[0]
|
|
|
|
|
|
sentiment_labels = ["Negative Comment", "Positive Comment"]
|
|
predicted_label = sentiment_labels[predicted_class]
|
|
|
|
|
|
positive_percentage = probabilities[1] * 100
|
|
negative_percentage = probabilities[0] * 100
|
|
|
|
return predicted_label, positive_percentage, negative_percentage
|
|
|
|
|
|
with gr.Blocks() as interface:
|
|
gr.Markdown("<h1>Text Classification Models</h1>")
|
|
gr.Markdown("Choose a model and provide a review to see the sentiment analysis results with probabilities displayed as scales.")
|
|
|
|
with gr.Row():
|
|
with gr.Column():
|
|
review_input = gr.Textbox(label="Review Comment", placeholder="Type your comment here...")
|
|
model_selector = gr.Dropdown(
|
|
choices=list(models.keys()), label="Select Model", value="Logistic Regression"
|
|
)
|
|
submit_button = gr.Button("Submit")
|
|
|
|
with gr.Column():
|
|
sentiment_output = gr.Textbox(label="Predicted Sentiment Class", interactive=False)
|
|
positive_progress = gr.Slider(label="Positive Comment Percentage", minimum=0, maximum=100, interactive=False)
|
|
negative_progress = gr.Slider(label="Negative Comment Percentage", minimum=0, maximum=100, interactive=False)
|
|
|
|
submit_button.click(
|
|
predict_sentiment,
|
|
inputs=[review_input, model_selector],
|
|
outputs=[sentiment_output, positive_progress, negative_progress],
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
interface.launch()
|
|
|