--- license: apache-2.0 base_model: facebook/wav2vec2-base-960h tags: - generated_from_trainer metrics: - wer model-index: - name: wtimit-base-960h-normal30percent-all results: [] --- # wtimit-base-960h-normal30percent-all This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8097 - Wer: 0.3692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:------:| | 0.32 | 1.3889 | 1000 | 0.3506 | 0.2804 | | 0.2342 | 2.7778 | 2000 | 0.4413 | 0.2977 | | 0.183 | 4.1667 | 3000 | 0.4847 | 0.3134 | | 0.1389 | 5.5556 | 4000 | 0.5576 | 0.3291 | | 0.1156 | 6.9444 | 5000 | 0.6021 | 0.3405 | | 0.1003 | 8.3333 | 6000 | 0.6778 | 0.3632 | | 0.0921 | 9.7222 | 7000 | 0.6309 | 0.3549 | | 0.0771 | 11.1111 | 8000 | 0.7765 | 0.3823 | | 0.0674 | 12.5 | 9000 | 0.7512 | 0.3722 | | 0.0629 | 13.8889 | 10000 | 0.6964 | 0.3764 | | 0.0575 | 15.2778 | 11000 | 0.8090 | 0.3812 | | 0.0531 | 16.6667 | 12000 | 0.8377 | 0.3919 | | 0.044 | 18.0556 | 13000 | 0.8246 | 0.3881 | | 0.0427 | 19.4444 | 14000 | 0.8331 | 0.3826 | | 0.0415 | 20.8333 | 15000 | 0.8166 | 0.3800 | | 0.0356 | 22.2222 | 16000 | 0.8550 | 0.3916 | | 0.0359 | 23.6111 | 17000 | 0.7968 | 0.3843 | | 0.0311 | 25.0 | 18000 | 0.8020 | 0.3788 | | 0.0251 | 26.3889 | 19000 | 0.8026 | 0.3684 | | 0.0264 | 27.7778 | 20000 | 0.7937 | 0.3743 | | 0.0248 | 29.1667 | 21000 | 0.8097 | 0.3692 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1