File size: 1,564 Bytes
07ea023 ea95e4d 5fb67fb e34dfc6 5fb67fb e34dfc6 5fb67fb e34dfc6 5fb67fb 37a67d1 5fb67fb 4882636 5fb67fb b49c9a9 f828034 b49c9a9 5fb67fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: mit
tags:
- transformers
language:
- en
---
# FaceXFormer Model Card
<div align="center">
[**Project Page**](https://kartik-3004.github.io/facexformer/) **|** [**Paper (ArXiv)**](https://arxiv.org/abs/2403.12960) **|** [**Code**](https://github.com/Kartik-3004/facexformer)
</div>
## Introduction
FaceXFormer is an end-to-end unified model capable of handling a comprehensive range of facial analysis tasks such as face parsing,
landmark detection, head pose estimation, attributes recognition, age/gender/race estimation, facial expression recognition and face visibility prediction.
<div align="center">
<img src='assets/intro.png'>
</div>
## Model Details
FaceXFormer is a transformer-based encoder-decoder architecture where each task is treated as a learnable token, enabling the
integration of multiple tasks within a single framework.
<div align="center">
<img src='assets/main_archi.png'>
</div>
## Usage
The models can be downloaded directly from this repository or using python:
```python
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="kartiknarayan/facexformer", filename="ckpts/model.pt", local_dir="./")
```
## Citation
```bibtex
@article{narayan2024facexformer,
title={FaceXFormer: A Unified Transformer for Facial Analysis},
author={Narayan, Kartik and VS, Vibashan and Chellappa, Rama and Patel, Vishal M},
journal={arXiv preprint arXiv:2403.12960},
year={2024}
}
```
Please check our [GitHub repository](https://github.com/Kartik-3004/facexformer) for complete inference instructions. |