nehcgs commited on
Commit
496db6c
·
verified ·
1 Parent(s): cc96ba8

Upload folder using huggingface_hub

Browse files
Arch-Function-7B-Q2_K.gguf CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f5ea9215f0404f71e7b33979aa4d8cef69826e25474760295496457db13368f8
3
- size 3015940032
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79a85953b382a266c84933abc8dcfd8ef8e73f42690db99d1e08ef7bf40d3afa
3
+ size 3015940064
Arch-Function-7B-Q3_K_L.gguf CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c94b7bc3eca39d27c43fa42b58ff633e8972fa5aaa127a55e7326d387227e9e7
3
- size 4088459200
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:457bb3ce0ce71888d1ff9ae2a8d4094f599697a06654a9d9486352fe91dd3344
3
+ size 4088459232
Arch-Function-7B-Q3_K_M.gguf CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f218e1b088ed83897b9d1388beb91e28c7f16b164d17cae624ef2a80e625ebbf
3
- size 3808391104
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84cf839dfc4cbdd6b09c468cf43157f7a03c60f40b7e5c278b8124ae3df9edf7
3
+ size 3808391136
Arch-Function-7B-Q3_K_S.gguf CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f600be324a7e4e7cc72367ec55f811eded20c5e3814589cf5624df377257e783
3
- size 3492368320
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29b84a937c2af3e36f0abd49ecedd6b14841992f73cd0d3a90de7a53bfb7f055
3
+ size 3492368352
Arch-Function-7B-Q4_K_M.gguf CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3e65120a99b4b668f367403a8e557b03c8764525b874293478eb3bde27808d9f
3
- size 4683073472
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d9aed7134572c3a72df851bb66e982600b1d450b68e7171f919b703c27d9793
3
+ size 4683073504
Arch-Function-7B-Q4_K_S.gguf CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dbcc05e2ca5b9c1dcc3373dd065862f0ef1773f28a85e12f04a30626192bb126
3
- size 4457768896
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:848f67c3b0bddc5b248c0a585992b7d0011d547e7b8c1a123295e6f8cae7e33e
3
+ size 4457768928
Arch-Function-7B-Q5_K_M.gguf CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3f7e356856e0e408467a40a2c4fbffe82485fdb9bce358ddeac92bda36b252f0
3
- size 5444831168
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6034f5c174beb6421f2ff5cb34bd6fdcd29a3be799180ebde82f8509924e9dc9
3
+ size 5444831200
Arch-Function-7B-Q5_K_S.gguf CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7626c5ac58d2f63d5b791dbdd371edc12d78eeb288582ce5ccce82748d366347
3
- size 5315176384
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d4f1b35318b9a235589b3edb513df83181afa8099c2aca7f9a5e07d15ba2291
3
+ size 5315176416
Arch-Function-7B-Q6_K.gguf CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:223ed55a7b1113b7a1c097dfea61ddeee88ba8dd4e4b97c72e3841a019433594
3
- size 6254198720
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:513517b9eaf47a19ce87dfcd5c0c30e30c53eda311b11630057afb04c75cbb3f
3
+ size 6254198752
Arch-Function-7B.gguf CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4ec84be2a8528b0507508e8cf36f6b76228262122e3f7e2fcc5af2b86fb3ba8c
3
- size 15237853120
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47374bccc104e585201537cd9c63663c9c5db316fccaa0a65be8321804448479
3
+ size 15237853152
README.md CHANGED
@@ -2,16 +2,16 @@
2
  license: other
3
  license_name: katanemo-research
4
  license_link: >-
5
- https://huggingface.co/katanemolabs/Arch-Function-1.5B/blob/main/LICENSE
6
  base_model:
7
- - Qwen/Qwen2.5-1.5B-Instruct
8
  language:
9
  - en
10
  pipeline_tag: text-generation
11
  library_name: transformers
12
  ---
13
 
14
- # katanemo/Arch-Function-1.5B
15
 
16
  ## Overview
17
  The Katanemo Arch-Function collection of large language models (LLMs) is a collection state-of-the-art (SOTA) LLMs specifically designed for **function calling** tasks. The models are designed to understand complex function signatures, identify required parameters, and produce accurate function call outputs based on natural language prompts. Achieving performance on par with GPT-4, these models set a new benchmark in the domain of function-oriented tasks, making them suitable for scenarios where automated API interaction and function execution is crucial.
@@ -54,7 +54,7 @@ Katanemo Arch-Function collection is built on top of the [Qwen 2.5](https://hugg
54
 
55
 
56
  ## Performance Benchmarks
57
- We evaluate Katanemo Arch-Function series on the [Berkeley Function-Calling Leaderboard (BFCL)](https://gorilla.cs.berkeley.edu/leaderboard.html#leaderboard). For each model family, we select the one with the highest rank. The results (as of Oct 21st, 2024) are shwon below:
58
 
59
  <table>
60
  <tr style="text-align: center; vertical-align: middle; font-weight: bold;">
@@ -84,27 +84,16 @@ We evaluate Katanemo Arch-Function series on the [Berkeley Function-Calling Lead
84
  <td>63.41%</td>
85
  <td>82.93%</td>
86
  </tr>
87
- <tr style="text-align: center; vertical-align: middle;">
88
- <td>2</td>
89
- <td>Functionary-Medium-v3.1 (FC)</td>
90
- <td>62.02%</td>
91
- <td>89.52%</td>
92
- <td>89.77%</td>
93
- <td>73.48%</td>
94
- <td>23.50%</td>
95
- <td>70.73%</td>
96
- <td>73.32%</td>
97
- </tr>
98
- <tr style="text-align: center; vertical-align: middle;">
99
- <td>5</td>
100
- <td>ToolACE-8B (FC)</td>
101
- <td>60.44%</td>
102
- <td>87.06%</td>
103
- <td>89.52%</td>
104
- <td>74.99%</td>
105
- <td>17.38%</td>
106
- <td>80.49%</td>
107
- <td>85.71%</td>
108
  </tr>
109
  <tr style="text-align: center; vertical-align: middle;">
110
  <td>6</td>
@@ -117,28 +106,6 @@ We evaluate Katanemo Arch-Function series on the [Berkeley Function-Calling Lead
117
  <td>73.17%</td>
118
  <td>74.60%</td>
119
  </tr>
120
- <tr style="text-align: center; vertical-align: middle; font-weight: bold;">
121
- <td> </td>
122
- <td>Arch-Function-7B</td>
123
- <td>58.44%</td>
124
- <td>85.58%</td>
125
- <td>88.14%</td>
126
- <td>69.08%</td>
127
- <td>20.50%</td>
128
- <td>92.68%</td>
129
- <td>74.05%</td>
130
- </tr>
131
- <tr style="text-align: center; vertical-align: middle; ">
132
- <td>8</td>
133
- <td>xLAM-8x22b-r (FC)</td>
134
- <td>57.99%</td>
135
- <td>88.15%</td>
136
- <td>90.11%</td>
137
- <td>71.97%</td>
138
- <td>14.50%</td>
139
- <td>85.37%</td>
140
- <td>67.29%</td>
141
- </tr>
142
  <tr style="text-align: center; vertical-align: middle; ">
143
  <td>9</td>
144
  <td>Gemini-1.5-Flash-002 (Prompt)</td>
@@ -150,16 +117,16 @@ We evaluate Katanemo Arch-Function series on the [Berkeley Function-Calling Lead
150
  <td>85.37%</td>
151
  <td>78.54%</td>
152
  </tr>
153
- <tr style="text-align: center; vertical-align: middle; ">
154
- <td>10</td>
155
- <td>Hammer2.0-7b (FC)</td>
156
  <td>57.69%</td>
157
- <td>90.27%</td>
158
- <td>89.25%</td>
159
- <td>69.79%</td>
160
- <td>14.75%</td>
161
- <td>95.12%</td>
162
- <td>68.46%</td>
163
  </tr>
164
  <tr style="text-align: center; vertical-align: middle; ">
165
  <td>12</td>
@@ -183,50 +150,16 @@ We evaluate Katanemo Arch-Function series on the [Berkeley Function-Calling Lead
183
  <td>75.61%</td>
184
  <td>49.44%</td>
185
  </tr>
186
- <tr style="text-align: center; vertical-align: middle; font-weight: bold;">
187
- <td> </td>
188
- <td>Arch-Function-3B</td>
189
- <td>56.57%</td>
190
- <td>83.62%</td>
191
- <td>85.36%</td>
192
- <td>66.90%</td>
193
- <td>19.50%</td>
194
- <td>97.56%</td>
195
- <td>70.99%</td>
196
- </tr>
197
- </tr>
198
  <tr style="text-align: center; vertical-align: middle; font-weight: bold;">
199
  <td> </td>
200
  <td>Arch-Function-1.5B</td>
201
- <td>54.52%</td>
202
- <td>80.31%</td>
203
- <td>82.04%</td>
204
- <td>66.19%</td>
205
- <td>17.25%</td>
206
- <td>97.56%</td>
207
- <td>69.95%</td>
208
- </tr>
209
- <tr style="text-align: center; vertical-align: middle; ">
210
- <td>19</td>
211
- <td>xLAM-7b-r (FC)</td>
212
- <td>54.41%</td>
213
- <td>81.40%</td>
214
- <td>83.46%</td>
215
- <td>67.88%</td>
216
- <td>14.50%</td>
217
- <td>97.56%</td>
218
- <td>64.05%</td>
219
- </tr>
220
- <tr style="text-align: center; vertical-align: middle; ">
221
- <td>20</td>
222
- <td>Qwen2.5-7B-Instruct (Prompt)</td>
223
- <td>54.27%</td>
224
- <td>85.79%</td>
225
- <td>88.13%</td>
226
- <td>65.97%</td>
227
- <td>11.25%</td>
228
- <td>92.68%</td>
229
- <td>64.95%</td>
230
  </tr>
231
  <tr style="text-align: center; vertical-align: middle; ">
232
  <td>21</td>
@@ -254,7 +187,7 @@ We evaluate Katanemo Arch-Function series on the [Berkeley Function-Calling Lead
254
 
255
 
256
  # Requirements
257
- The code of Arch-Function-1.5B has been in the Hugging Face `transformers` library and we advise you to install latest version:
258
  ```bash
259
  pip install transformers>=4.37.0
260
  ```
@@ -270,7 +203,7 @@ import json
270
  from typing import Any, Dict, List
271
  from transformers import AutoModelForCausalLM, AutoTokenizer
272
 
273
- model_name = "katanemo/Arch-Function-1.5B"
274
  model = AutoModelForCausalLM.from_pretrained(
275
  model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True
276
  )
@@ -409,4 +342,4 @@ The current temperature in Seattle is 62 degrees in Fahrenheit.
409
 
410
 
411
  # License
412
- Katanemo Arch-Function collection is distributed under the [Katanemo license](https://huggingface.co/katanemolabs/Arch-Function-1.5B/blob/main/LICENSE).
 
2
  license: other
3
  license_name: katanemo-research
4
  license_link: >-
5
+ https://huggingface.co/katanemolabs/Arch-Function-7B.gguf/blob/main/LICENSE
6
  base_model:
7
+ - katanemo/Arch-Function-7B
8
  language:
9
  - en
10
  pipeline_tag: text-generation
11
  library_name: transformers
12
  ---
13
 
14
+ # katanemo/Arch-Function-7B
15
 
16
  ## Overview
17
  The Katanemo Arch-Function collection of large language models (LLMs) is a collection state-of-the-art (SOTA) LLMs specifically designed for **function calling** tasks. The models are designed to understand complex function signatures, identify required parameters, and produce accurate function call outputs based on natural language prompts. Achieving performance on par with GPT-4, these models set a new benchmark in the domain of function-oriented tasks, making them suitable for scenarios where automated API interaction and function execution is crucial.
 
54
 
55
 
56
  ## Performance Benchmarks
57
+ We evaluate Katanemo Arch-Function series on the [Berkeley Function-Calling Leaderboard (BFCL)](https://gorilla.cs.berkeley.edu/leaderboard.html#leaderboard). We compare with commonly-used models and the results (as of Oct 21st, 2024) are shwon below. For each model family, we select the one with the highest rank.
58
 
59
  <table>
60
  <tr style="text-align: center; vertical-align: middle; font-weight: bold;">
 
84
  <td>63.41%</td>
85
  <td>82.93%</td>
86
  </tr>
87
+ <tr style="text-align: center; vertical-align: middle; font-weight: bold;">
88
+ <td> </td>
89
+ <td>Arch-Function-7B</td>
90
+ <td>59.62%</td>
91
+ <td>86.83%</td>
92
+ <td>88.07%</td>
93
+ <td>71.57%</td>
94
+ <td>21.00%</td>
95
+ <td>95.12%</td>
96
+ <td>73.63%</td>
 
 
 
 
 
 
 
 
 
 
 
97
  </tr>
98
  <tr style="text-align: center; vertical-align: middle;">
99
  <td>6</td>
 
106
  <td>73.17%</td>
107
  <td>74.60%</td>
108
  </tr>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  <tr style="text-align: center; vertical-align: middle; ">
110
  <td>9</td>
111
  <td>Gemini-1.5-Flash-002 (Prompt)</td>
 
117
  <td>85.37%</td>
118
  <td>78.54%</td>
119
  </tr>
120
+ <tr style="text-align: center; vertical-align: middle; font-weight: bold;">
121
+ <td> </td>
122
+ <td>Arch-Function-3B</td>
123
  <td>57.69%</td>
124
+ <td>85.19%</td>
125
+ <td>86.18%</td>
126
+ <td>71.21%</td>
127
+ <td>17.50%</td>
128
+ <td>90.24%</td>
129
+ <td>72.88%</td>
130
  </tr>
131
  <tr style="text-align: center; vertical-align: middle; ">
132
  <td>12</td>
 
150
  <td>75.61%</td>
151
  <td>49.44%</td>
152
  </tr>
 
 
 
 
 
 
 
 
 
 
 
 
153
  <tr style="text-align: center; vertical-align: middle; font-weight: bold;">
154
  <td> </td>
155
  <td>Arch-Function-1.5B</td>
156
+ <td>56.20%</td>
157
+ <td>84.40%</td>
158
+ <td>83.96%</td>
159
+ <td>69.36%</td>
160
+ <td>15.88%</td>
161
+ <td>87.80%</td>
162
+ <td>74.39%</td>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
  </tr>
164
  <tr style="text-align: center; vertical-align: middle; ">
165
  <td>21</td>
 
187
 
188
 
189
  # Requirements
190
+ The code of Arch-Function-7B has been in the Hugging Face `transformers` library and we advise you to install latest version:
191
  ```bash
192
  pip install transformers>=4.37.0
193
  ```
 
203
  from typing import Any, Dict, List
204
  from transformers import AutoModelForCausalLM, AutoTokenizer
205
 
206
+ model_name = "katanemo/Arch-Function-7B"
207
  model = AutoModelForCausalLM.from_pretrained(
208
  model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True
209
  )
 
342
 
343
 
344
  # License
345
+ Katanemo Arch-Function collection is distributed under the [Katanemo license](https://huggingface.co/katanemolabs/Arch-Function-7B.gguf/blob/main/LICENSE).