katuni4ka commited on
Commit
10ddc7b
·
verified ·
1 Parent(s): 6ad67f2

Upload 14 files

Browse files
added_tokens.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 32203,
3
+ "</obj>": 32001,
4
+ "<box>": 32202,
5
+ "<image>": 32204,
6
+ "<lat_image>": 32206,
7
+ "<obj>": 32000,
8
+ "<prev_im>": 32205,
9
+ "<x0>": 32002,
10
+ "<x10>": 32012,
11
+ "<x11>": 32013,
12
+ "<x12>": 32014,
13
+ "<x13>": 32015,
14
+ "<x14>": 32016,
15
+ "<x15>": 32017,
16
+ "<x16>": 32018,
17
+ "<x17>": 32019,
18
+ "<x18>": 32020,
19
+ "<x19>": 32021,
20
+ "<x1>": 32003,
21
+ "<x20>": 32022,
22
+ "<x21>": 32023,
23
+ "<x22>": 32024,
24
+ "<x23>": 32025,
25
+ "<x24>": 32026,
26
+ "<x25>": 32027,
27
+ "<x26>": 32028,
28
+ "<x27>": 32029,
29
+ "<x28>": 32030,
30
+ "<x29>": 32031,
31
+ "<x2>": 32004,
32
+ "<x30>": 32032,
33
+ "<x31>": 32033,
34
+ "<x32>": 32034,
35
+ "<x33>": 32035,
36
+ "<x34>": 32036,
37
+ "<x35>": 32037,
38
+ "<x36>": 32038,
39
+ "<x37>": 32039,
40
+ "<x38>": 32040,
41
+ "<x39>": 32041,
42
+ "<x3>": 32005,
43
+ "<x40>": 32042,
44
+ "<x41>": 32043,
45
+ "<x42>": 32044,
46
+ "<x43>": 32045,
47
+ "<x44>": 32046,
48
+ "<x45>": 32047,
49
+ "<x46>": 32048,
50
+ "<x47>": 32049,
51
+ "<x48>": 32050,
52
+ "<x49>": 32051,
53
+ "<x4>": 32006,
54
+ "<x50>": 32052,
55
+ "<x51>": 32053,
56
+ "<x52>": 32054,
57
+ "<x53>": 32055,
58
+ "<x54>": 32056,
59
+ "<x55>": 32057,
60
+ "<x56>": 32058,
61
+ "<x57>": 32059,
62
+ "<x58>": 32060,
63
+ "<x59>": 32061,
64
+ "<x5>": 32007,
65
+ "<x60>": 32062,
66
+ "<x61>": 32063,
67
+ "<x62>": 32064,
68
+ "<x63>": 32065,
69
+ "<x64>": 32066,
70
+ "<x65>": 32067,
71
+ "<x66>": 32068,
72
+ "<x67>": 32069,
73
+ "<x68>": 32070,
74
+ "<x69>": 32071,
75
+ "<x6>": 32008,
76
+ "<x70>": 32072,
77
+ "<x71>": 32073,
78
+ "<x72>": 32074,
79
+ "<x73>": 32075,
80
+ "<x74>": 32076,
81
+ "<x75>": 32077,
82
+ "<x76>": 32078,
83
+ "<x77>": 32079,
84
+ "<x78>": 32080,
85
+ "<x79>": 32081,
86
+ "<x7>": 32009,
87
+ "<x80>": 32082,
88
+ "<x81>": 32083,
89
+ "<x82>": 32084,
90
+ "<x83>": 32085,
91
+ "<x84>": 32086,
92
+ "<x85>": 32087,
93
+ "<x86>": 32088,
94
+ "<x87>": 32089,
95
+ "<x88>": 32090,
96
+ "<x89>": 32091,
97
+ "<x8>": 32010,
98
+ "<x90>": 32092,
99
+ "<x91>": 32093,
100
+ "<x92>": 32094,
101
+ "<x93>": 32095,
102
+ "<x94>": 32096,
103
+ "<x95>": 32097,
104
+ "<x96>": 32098,
105
+ "<x97>": 32099,
106
+ "<x98>": 32100,
107
+ "<x99>": 32101,
108
+ "<x9>": 32011,
109
+ "<y0>": 32102,
110
+ "<y10>": 32112,
111
+ "<y11>": 32113,
112
+ "<y12>": 32114,
113
+ "<y13>": 32115,
114
+ "<y14>": 32116,
115
+ "<y15>": 32117,
116
+ "<y16>": 32118,
117
+ "<y17>": 32119,
118
+ "<y18>": 32120,
119
+ "<y19>": 32121,
120
+ "<y1>": 32103,
121
+ "<y20>": 32122,
122
+ "<y21>": 32123,
123
+ "<y22>": 32124,
124
+ "<y23>": 32125,
125
+ "<y24>": 32126,
126
+ "<y25>": 32127,
127
+ "<y26>": 32128,
128
+ "<y27>": 32129,
129
+ "<y28>": 32130,
130
+ "<y29>": 32131,
131
+ "<y2>": 32104,
132
+ "<y30>": 32132,
133
+ "<y31>": 32133,
134
+ "<y32>": 32134,
135
+ "<y33>": 32135,
136
+ "<y34>": 32136,
137
+ "<y35>": 32137,
138
+ "<y36>": 32138,
139
+ "<y37>": 32139,
140
+ "<y38>": 32140,
141
+ "<y39>": 32141,
142
+ "<y3>": 32105,
143
+ "<y40>": 32142,
144
+ "<y41>": 32143,
145
+ "<y42>": 32144,
146
+ "<y43>": 32145,
147
+ "<y44>": 32146,
148
+ "<y45>": 32147,
149
+ "<y46>": 32148,
150
+ "<y47>": 32149,
151
+ "<y48>": 32150,
152
+ "<y49>": 32151,
153
+ "<y4>": 32106,
154
+ "<y50>": 32152,
155
+ "<y51>": 32153,
156
+ "<y52>": 32154,
157
+ "<y53>": 32155,
158
+ "<y54>": 32156,
159
+ "<y55>": 32157,
160
+ "<y56>": 32158,
161
+ "<y57>": 32159,
162
+ "<y58>": 32160,
163
+ "<y59>": 32161,
164
+ "<y5>": 32107,
165
+ "<y60>": 32162,
166
+ "<y61>": 32163,
167
+ "<y62>": 32164,
168
+ "<y63>": 32165,
169
+ "<y64>": 32166,
170
+ "<y65>": 32167,
171
+ "<y66>": 32168,
172
+ "<y67>": 32169,
173
+ "<y68>": 32170,
174
+ "<y69>": 32171,
175
+ "<y6>": 32108,
176
+ "<y70>": 32172,
177
+ "<y71>": 32173,
178
+ "<y72>": 32174,
179
+ "<y73>": 32175,
180
+ "<y74>": 32176,
181
+ "<y75>": 32177,
182
+ "<y76>": 32178,
183
+ "<y77>": 32179,
184
+ "<y78>": 32180,
185
+ "<y79>": 32181,
186
+ "<y7>": 32109,
187
+ "<y80>": 32182,
188
+ "<y81>": 32183,
189
+ "<y82>": 32184,
190
+ "<y83>": 32185,
191
+ "<y84>": 32186,
192
+ "<y85>": 32187,
193
+ "<y86>": 32188,
194
+ "<y87>": 32189,
195
+ "<y88>": 32190,
196
+ "<y89>": 32191,
197
+ "<y8>": 32110,
198
+ "<y90>": 32192,
199
+ "<y91>": 32193,
200
+ "<y92>": 32194,
201
+ "<y93>": 32195,
202
+ "<y94>": 32196,
203
+ "<y95>": 32197,
204
+ "<y96>": 32198,
205
+ "<y97>": 32199,
206
+ "<y98>": 32200,
207
+ "<y99>": 32201,
208
+ "<y9>": 32111
209
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}You are an expert radiology assistant tasked with interpreting a chest X-ray study. {% for message in messages %}{% if message[\"role\"] == \"user\" %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message[\"content\"] %}{% if item[\"type\"] == \"text\" %}{{ item[\"text\"] }}{% elif item[\"type\"] == \"image\" %}<image>{% endif %}{% endfor %}{% if message[\"role\"] == \"user\" %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/ea/work/my_optimum_intel/optimum-intel/maira2",
3
+ "architectures": [
4
+ "Maira2ForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_maira2.Maira2Config",
8
+ "AutoModelForCausalLM": "modeling_maira2.Maira2ForConditionalGeneration",
9
+ "AutoModelForVision2Seq": "modeling_maira2.Maira2ForConditionalGeneration"
10
+ },
11
+ "hidden_size": 16,
12
+ "ignore_index": -100,
13
+ "image_seq_length": 4,
14
+ "image_token_index": 32204,
15
+ "model_type": "maira2",
16
+ "multimodal_projector_bias": true,
17
+ "pad_token_id": 0,
18
+ "projector_hidden_act": "gelu",
19
+ "projector_n_layers": 4,
20
+ "text_config": {
21
+ "_name_or_path": "HuggingFaceM4/tiny-random-LlamaForCausalLM",
22
+ "architectures": [
23
+ "LlamaForCausalLM"
24
+ ],
25
+ "bos_token_id": 0,
26
+ "eos_token_id": 1,
27
+ "head_dim": 4,
28
+ "hidden_size": 16,
29
+ "intermediate_size": 64,
30
+ "model_type": "llama",
31
+ "num_attention_heads": 4,
32
+ "num_hidden_layers": 2,
33
+ "num_key_value_heads": 4,
34
+ "pad_token_id": 2,
35
+ "torch_dtype": "bfloat16",
36
+ "vocab_size": 32207
37
+ },
38
+ "torch_dtype": "float32",
39
+ "transformers_version": "4.48.3",
40
+ "vision_config": {
41
+ "apply_layernorm": true,
42
+ "architectures": [
43
+ "Dinov2Model"
44
+ ],
45
+ "attention_probs_dropout_prob": 0.0,
46
+ "drop_path_rate": 0.0,
47
+ "hidden_act": "gelu",
48
+ "hidden_dropout_prob": 0.0,
49
+ "hidden_size": 16,
50
+ "image_size": 30,
51
+ "layer_norm_eps": 1e-06,
52
+ "layerscale_value": 1.0,
53
+ "mlp_ratio": 4,
54
+ "model_type": "dinov2",
55
+ "num_attention_heads": 4,
56
+ "num_hidden_layers": 4,
57
+ "out_features": [
58
+ "stage4"
59
+ ],
60
+ "out_indices": [
61
+ 4
62
+ ],
63
+ "patch_size": 2,
64
+ "qkv_bias": true,
65
+ "reshape_hidden_states": false,
66
+ "stage_names": [
67
+ "stem",
68
+ "stage1",
69
+ "stage2",
70
+ "stage3",
71
+ "stage4"
72
+ ],
73
+ "torch_dtype": "float32",
74
+ "use_swiglu_ffn": false
75
+ },
76
+ "vision_feature_layer": -1,
77
+ "vision_feature_select_strategy": "default"
78
+ }
configuration_maira2.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft. All rights reserved.
2
+ # Licensed under the MSRLA License. See LICENSE in the repo root for license information.
3
+
4
+
5
+ from typing import Any
6
+
7
+ from transformers import LlavaConfig
8
+
9
+
10
+ class Maira2Config(LlavaConfig):
11
+ """
12
+ This is the configuration class to store the configuration of a `Maira2ForConditionalGeneration` model. It is
13
+ used to instantiate a MAIRA-2 model according to the specified arguments, defining the model architecture.
14
+
15
+ It inherits from `LlavaConfig`. In addition to the inherited attributes, it adds the
16
+ ability to customize the multimodal projector through following attributes:
17
+
18
+ Args:
19
+ projector_n_layers (`int`, *optional*, defaults to 4):
20
+ Number of layers in the multimodal projector.
21
+ """
22
+
23
+ model_type = "maira2"
24
+
25
+ def __init__(
26
+ self,
27
+ projector_n_layers: int = 4,
28
+ **kwargs: Any,
29
+ ) -> None:
30
+ super().__init__(**kwargs)
31
+ self.hidden_size = self.text_config.hidden_size
32
+ self.projector_n_layers = projector_n_layers
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.48.3"
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3bfb1d6f0ec0f0949cd84df187a2bfb571242c4ca9bdd519c4af512716ae23a
3
+ size 4240896
modeling_maira2.py ADDED
@@ -0,0 +1,359 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft. All rights reserved.
2
+ # Licensed under the MSRLA License. See LICENSE in the repo root for license information.
3
+
4
+ from typing import Optional, List, Tuple, Union
5
+ import torch
6
+ from torch.nn import Linear, Module, Sequential
7
+ from transformers import AutoBackbone, AutoModelForCausalLM, LlavaForConditionalGeneration, LlavaPreTrainedModel
8
+ from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast
9
+ from transformers.activations import ACT2FN
10
+ from transformers.utils import check_min_version
11
+
12
+ from .configuration_maira2 import Maira2Config
13
+
14
+
15
+ class Maira2MultiModalProjector(Module):
16
+ """
17
+ This class implements the multimodal projector for MAIRA-2 model. It projects the image features to the text
18
+ hidden size via a series of linear layers (4 layers in MAIRA-2).
19
+ """
20
+
21
+ def __init__(self, config: Maira2Config):
22
+ super().__init__()
23
+
24
+ n_layers = config.projector_n_layers
25
+ if n_layers < 1:
26
+ raise ValueError(f"Number of layers should be at least 1, got {n_layers=}")
27
+ text_hidden_size = config.text_config.hidden_size
28
+ vision_hidden_size = config.vision_config.hidden_size
29
+ _layers = [Linear(vision_hidden_size, text_hidden_size, bias=True)]
30
+ for _ in range(n_layers - 1):
31
+ _layers.append(ACT2FN[config.projector_hidden_act])
32
+ _layers.append(Linear(text_hidden_size, text_hidden_size, bias=True))
33
+
34
+ self.layers = Sequential(*_layers)
35
+
36
+ def forward(self, image_features: torch.Tensor) -> torch.FloatTensor:
37
+ hidden_states = self.layers(image_features)
38
+ return hidden_states # type: ignore[no-any-return]
39
+
40
+
41
+ class Maira2ForConditionalGeneration(LlavaForConditionalGeneration):
42
+ """
43
+ This model implements the multimodal model MAIRA-2. It consists of a vision backbone, a multimodal projector, and a
44
+ language model. The model can be used for grounded and ungrounded report generation tasks as well as phrase grounding.
45
+ This class inherits from `LlavaForConditionalGeneration`, defining a custom multimodal projector and changing image
46
+ feature selection.
47
+ """
48
+
49
+ config_class = Maira2Config
50
+
51
+ def __init__(self, config: Maira2Config) -> None:
52
+
53
+ # Check transformers version is at least 4.46.0.dev0 otherwise the model fails
54
+ # silently since get_image_features is not called in the forward pass
55
+ check_min_version("4.46.0.dev0")
56
+
57
+ super(LlavaPreTrainedModel, self).__init__(config)
58
+ self.vision_tower = AutoBackbone.from_config(config.vision_config)
59
+
60
+ self.multi_modal_projector = Maira2MultiModalProjector(config)
61
+ self.vocab_size = config.text_config.vocab_size
62
+ self.language_model = AutoModelForCausalLM.from_config(
63
+ config.text_config,
64
+ attn_implementation=config._attn_implementation,
65
+ )
66
+ self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
67
+ self.post_init()
68
+
69
+ def get_image_features(
70
+ self, pixel_values: torch.FloatTensor, vision_feature_layer: int, vision_feature_select_strategy: str
71
+ ) -> torch.Tensor:
72
+ """
73
+ This method extracts the image features from the vision backbone using the specified feature layer and
74
+ selection strategy. This is custom to MAIRA-2 model since we want to use the `feature_maps` from the Dinov2Backbone
75
+ class instead of the `hidden_states` which are used in the default implementation of `get_image_features` in LlavaForConditionalGeneration.
76
+ The feature_maps returned by Dinov2Backbone are the hideen_states with a layernorm applied to them.
77
+ """
78
+ image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
79
+ selected_image_feature = image_outputs.feature_maps[vision_feature_layer]
80
+
81
+ if vision_feature_select_strategy == "default":
82
+ selected_image_feature = selected_image_feature[:, 1:]
83
+ elif vision_feature_select_strategy == "full":
84
+ selected_image_feature = selected_image_feature
85
+ else:
86
+ raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
87
+
88
+ image_features = self.multi_modal_projector(selected_image_feature)
89
+ return image_features # type: ignore[no-any-return]
90
+
91
+ # modification from original, added forward from transformers 4.46 to prevent new preprocessing
92
+ def forward(
93
+ self,
94
+ input_ids: torch.LongTensor = None,
95
+ pixel_values: torch.FloatTensor = None,
96
+ attention_mask: Optional[torch.Tensor] = None,
97
+ position_ids: Optional[torch.LongTensor] = None,
98
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
99
+ inputs_embeds: Optional[torch.FloatTensor] = None,
100
+ vision_feature_layer: Optional[int] = None,
101
+ vision_feature_select_strategy: Optional[str] = None,
102
+ labels: Optional[torch.LongTensor] = None,
103
+ use_cache: Optional[bool] = None,
104
+ output_attentions: Optional[bool] = None,
105
+ output_hidden_states: Optional[bool] = None,
106
+ return_dict: Optional[bool] = None,
107
+ cache_position: Optional[torch.LongTensor] = None,
108
+ num_logits_to_keep: int = 0,
109
+ ) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
110
+ r"""
111
+ Args:
112
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
113
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
114
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
115
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
116
+
117
+ num_logits_to_keep (`int`, *optional*):
118
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
119
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
120
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
121
+
122
+
123
+ Returns:
124
+
125
+ Example:
126
+
127
+ ```python
128
+ >>> from PIL import Image
129
+ >>> import requests
130
+ >>> from transformers import AutoProcessor, LlavaForConditionalGeneration
131
+
132
+ >>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
133
+ >>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
134
+
135
+ >>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
136
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
137
+ >>> image = Image.open(requests.get(url, stream=True).raw)
138
+
139
+ >>> inputs = processor(images=image, text=prompt, return_tensors="pt")
140
+
141
+ >>> # Generate
142
+ >>> generate_ids = model.generate(**inputs, max_new_tokens=15)
143
+ >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
144
+ "USER: \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
145
+ ```"""
146
+
147
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
148
+ output_hidden_states = (
149
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
150
+ )
151
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
152
+ vision_feature_layer = (
153
+ vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
154
+ )
155
+ vision_feature_select_strategy = (
156
+ vision_feature_select_strategy
157
+ if vision_feature_select_strategy is not None
158
+ else self.config.vision_feature_select_strategy
159
+ )
160
+
161
+ if (input_ids is None) ^ (inputs_embeds is not None):
162
+ raise ValueError(
163
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
164
+ )
165
+
166
+ if pixel_values is not None and inputs_embeds is not None:
167
+ raise ValueError(
168
+ "You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
169
+ )
170
+
171
+ legacy_processing = False
172
+ if inputs_embeds is None:
173
+ inputs_embeds = self.get_input_embeddings()(input_ids)
174
+
175
+ # if the number of image tokens is more than image embeddings seq length, then prob we expanded it in processing
176
+ # not very reliable, but we don't expect one to actually pass 500+ images for one prompt
177
+ # In case we're in decoding stage, legacy behavior is checked by presence of pixel values even if use_cache=True
178
+ legacy_processing = (
179
+ (input_ids == self.config.image_token_index).sum(1).max() < self.config.image_seq_length
180
+ ) or (input_ids.shape[-1] == 1 and pixel_values is not None)
181
+
182
+ if pixel_values is not None:
183
+ image_features = self.get_image_features(
184
+ pixel_values=pixel_values,
185
+ vision_feature_layer=vision_feature_layer,
186
+ vision_feature_select_strategy=vision_feature_select_strategy,
187
+ )
188
+ print(image_features.shape)
189
+
190
+ if legacy_processing:
191
+ # prefill stage vs decoding stage (legacy behavior copied)
192
+ if input_ids.shape[1] != 1:
193
+ inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
194
+ image_features, inputs_embeds, input_ids, attention_mask, labels
195
+ )
196
+ cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)
197
+ else:
198
+ # Retrieve the first layer to inspect the logits and mask out the hidden states
199
+ # that are set to 0
200
+ first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
201
+
202
+ # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
203
+ batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
204
+
205
+ # Get the target length
206
+ target_length = input_ids.shape[1]
207
+ past_length = first_layer_past_key_value.shape[-1]
208
+
209
+ extended_attention_mask = torch.ones(
210
+ (attention_mask.shape[0], past_length),
211
+ dtype=attention_mask.dtype,
212
+ device=attention_mask.device,
213
+ )
214
+
215
+ # Filter out only the tokens that can be un-attended, this can happen
216
+ # if one uses Llava + Fused modules where the cache on the
217
+ # first iteration is already big enough, or if one passes custom cache
218
+ valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
219
+ new_batch_index = batch_index[valid_indices]
220
+ new_non_attended_tokens = non_attended_tokens[valid_indices]
221
+
222
+ # Zero-out the places where we don't need to attend
223
+ extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
224
+
225
+ attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
226
+ position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
227
+ cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[
228
+ -target_length:
229
+ ]
230
+
231
+ # TODO: @raushan retain only the new behavior after v4.47
232
+ else:
233
+ special_image_mask = (
234
+ (input_ids == self.config.image_token_index).unsqueeze(-1).expand_as(inputs_embeds)
235
+ )
236
+ image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
237
+ inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
238
+
239
+ outputs = self.language_model(
240
+ attention_mask=attention_mask,
241
+ position_ids=position_ids,
242
+ past_key_values=past_key_values,
243
+ inputs_embeds=inputs_embeds,
244
+ use_cache=use_cache,
245
+ output_attentions=output_attentions,
246
+ output_hidden_states=output_hidden_states,
247
+ return_dict=return_dict,
248
+ cache_position=cache_position,
249
+ num_logits_to_keep=num_logits_to_keep,
250
+ )
251
+
252
+ logits = outputs[0]
253
+
254
+ loss = None
255
+ if labels is not None:
256
+ # Shift so that tokens < n predict n
257
+ if attention_mask is not None:
258
+ shift_attention_mask = attention_mask[..., 1:]
259
+ shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
260
+ shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
261
+ else:
262
+ shift_logits = logits[..., :-1, :].contiguous()
263
+ shift_labels = labels[..., 1:].contiguous()
264
+ # Flatten the tokens
265
+ loss_fct = torch.nn.CrossEntropyLoss()
266
+ loss = loss_fct(
267
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
268
+ )
269
+
270
+ if not return_dict:
271
+ output = (logits,) + outputs[1:]
272
+ return (loss,) + output if loss is not None else output
273
+
274
+ return LlavaCausalLMOutputWithPast(
275
+ loss=loss,
276
+ logits=logits,
277
+ past_key_values=outputs.past_key_values,
278
+ hidden_states=outputs.hidden_states,
279
+ attentions=outputs.attentions,
280
+ image_hidden_states=image_features if pixel_values is not None else None,
281
+ )
282
+
283
+ def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels):
284
+ num_images, num_image_patches, embed_dim = image_features.shape
285
+ batch_size, sequence_length = input_ids.shape
286
+ left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
287
+ # 1. Create a mask to know where special image tokens are
288
+ special_image_token_mask = input_ids == self.config.image_token_index
289
+ num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
290
+ # Compute the maximum embed dimension
291
+ max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
292
+ batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)
293
+
294
+ # 2. Compute the positions where text should be written
295
+ # Calculate new positions for text tokens in merged image-text sequence.
296
+ # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
297
+ # `torch.cumsum` computes how each image token shifts subsequent text token positions.
298
+ # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
299
+ new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
300
+ nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
301
+ if left_padding:
302
+ new_token_positions += nb_image_pad[:, None] # offset for left padding
303
+ text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
304
+
305
+ # 3. Create the full embedding, already padded to the maximum position
306
+ final_embedding = torch.zeros(
307
+ batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
308
+ )
309
+ final_attention_mask = torch.zeros(
310
+ batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
311
+ )
312
+ if labels is not None:
313
+ final_labels = torch.full(
314
+ (batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
315
+ )
316
+ # In case the Vision model or the Language model has been offloaded to CPU, we need to manually
317
+ # set the corresponding tensors into their correct target device.
318
+ target_device = inputs_embeds.device
319
+ batch_indices, non_image_indices, text_to_overwrite = (
320
+ batch_indices.to(target_device),
321
+ non_image_indices.to(target_device),
322
+ text_to_overwrite.to(target_device),
323
+ )
324
+ attention_mask = attention_mask.to(target_device)
325
+
326
+ # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
327
+ # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
328
+ final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
329
+ final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
330
+ if labels is not None:
331
+ final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
332
+
333
+ # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
334
+ image_to_overwrite = torch.full(
335
+ (batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
336
+ )
337
+ image_to_overwrite[batch_indices, text_to_overwrite] = False
338
+ image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
339
+
340
+ if image_to_overwrite.sum() != image_features.shape[:-1].numel():
341
+ raise ValueError(
342
+ f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
343
+ f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
344
+ )
345
+
346
+ final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
347
+ final_attention_mask |= image_to_overwrite
348
+ position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
349
+
350
+ # 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
351
+ batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id)
352
+ indices_to_mask = new_token_positions[batch_indices, pad_indices]
353
+
354
+ final_embedding[batch_indices, indices_to_mask] = 0
355
+
356
+ if labels is None:
357
+ final_labels = None
358
+
359
+ return final_embedding, final_attention_mask, final_labels, position_ids
preprocessor_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_maira2.Maira2Processor"
4
+ },
5
+ "crop_size": {
6
+ "height": 30,
7
+ "width": 30
8
+ },
9
+ "do_center_crop": true,
10
+ "do_convert_rgb": true,
11
+ "do_normalize": true,
12
+ "do_rescale": true,
13
+ "do_resize": true,
14
+ "image_mean": [
15
+ 0.5307,
16
+ 0.5307,
17
+ 0.5307
18
+ ],
19
+ "image_processor_type": "BitImageProcessor",
20
+ "image_std": [
21
+ 0.2583,
22
+ 0.2583,
23
+ 0.2583
24
+ ],
25
+ "processor_class": "Maira2Processor",
26
+ "resample": 3,
27
+ "rescale_factor": 0.00392156862745098,
28
+ "size": {
29
+ "shortest_edge": 30
30
+ }
31
+ }
processing_maira2.py ADDED
@@ -0,0 +1,729 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft. All rights reserved.
2
+ # Licensed under the MSRLA License. See LICENSE in the repo root for license information.
3
+
4
+
5
+ import re
6
+ from typing import Any, TypeAlias, Union, List
7
+
8
+ import numpy as np
9
+ from PIL import Image
10
+ from transformers import BaseImageProcessor, LlavaProcessor, PreTrainedTokenizer
11
+ from transformers.models.llava.processing_llava import LlavaProcessorKwargs
12
+ from transformers.feature_extraction_utils import BatchFeature
13
+ from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
14
+ from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
15
+ from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
16
+
17
+ SingleChatMessageType: TypeAlias = dict[str, str | int | None]
18
+ ChatMessageListType: TypeAlias = list[dict[str, str | list[SingleChatMessageType]]]
19
+ BoxType: TypeAlias = tuple[float, float, float, float]
20
+
21
+
22
+ class Maira2Processor(LlavaProcessor):
23
+ """
24
+ Constructs a Maira2 processor similar to LlavaProcessor but with additional arguments and functions to support
25
+ multi-image grounded and non-grounded radiology report generation.
26
+
27
+ In addition to the arguments of LlavaProcessor, Maira2Processor has the following extra arguments:
28
+
29
+ Args:
30
+ phrase_start_token (`str`, *optional*, defaults to `"<obj>"`):
31
+ Special token used to denote the start of a grounded phrase (with or without box).
32
+ phrase_end_token (`str`, *optional*, defaults to `"</obj>"`):
33
+ Special token used to denote the end of a grounded phrase.
34
+ box_start_token (`str`, *optional*, defaults to `"<box>"`):
35
+ Special token used to denote the start of a bounding box.
36
+ box_end_token (`str`, *optional*, defaults to `"</box>"`):
37
+ Special token used to denote the end of a bounding box.
38
+ num_box_coord_bins (`int`, *optional*, defaults to `100`):
39
+ Number of bins used to represent the bounding box coordinates.
40
+ """
41
+
42
+ valid_kwargs = [
43
+ "chat_template",
44
+ "patch_size",
45
+ "vision_feature_select_strategy",
46
+ "image_token",
47
+ "phrase_start_token",
48
+ "phrase_end_token",
49
+ "box_start_token",
50
+ "box_end_token",
51
+ "num_box_coord_bins",
52
+ ]
53
+
54
+ def __init__(
55
+ self,
56
+ image_processor: BaseImageProcessor = None,
57
+ tokenizer: PreTrainedTokenizer = None,
58
+ patch_size: int | None = None,
59
+ vision_feature_select_strategy: str | None = None,
60
+ chat_template: str | None = None,
61
+ image_token: str = "<image>",
62
+ phrase_start_token: str = "<obj>",
63
+ phrase_end_token: str = "</obj>",
64
+ box_start_token: str = "<box>",
65
+ box_end_token: str = "</box>",
66
+ num_box_coord_bins: int = 100,
67
+ **kwargs: Any,
68
+ ) -> None:
69
+ super().__init__(
70
+ image_processor=image_processor,
71
+ tokenizer=tokenizer,
72
+ patch_size=patch_size,
73
+ vision_feature_select_strategy=vision_feature_select_strategy,
74
+ chat_template=chat_template,
75
+ image_token=image_token,
76
+ **kwargs,
77
+ )
78
+
79
+ self.phrase_start_token = phrase_start_token
80
+ self.phrase_end_token = phrase_end_token
81
+ self.box_start_token = box_start_token
82
+ self.box_end_token = box_end_token
83
+ self.num_box_coord_bins = num_box_coord_bins
84
+
85
+ @staticmethod
86
+ def _normalize_image(image: Image.Image) -> Image.Image:
87
+ """
88
+ This function normalizes the input image to have pixel values in the range [0, 255].
89
+
90
+ Args:
91
+ image (Image.Image | np.ndarray):
92
+ The input image to be normalized.
93
+
94
+ Returns:
95
+ Image.Image: The normalized image in grayscale.
96
+ """
97
+ image_np = np.array(image.convert("L"))
98
+ image_np = image_np.astype(float)
99
+ image_np -= image_np.min()
100
+ image_np /= image_np.max()
101
+ image_np *= 255
102
+ image_np = image_np.astype(np.uint8)
103
+
104
+ return Image.fromarray(image_np).convert("L")
105
+
106
+ def _normalize_and_stack_images(
107
+ self,
108
+ current_frontal: Image.Image,
109
+ current_lateral: Image.Image | None,
110
+ prior_frontal: Image.Image | None,
111
+ ) -> list[Image.Image]:
112
+ """
113
+ This function normalizes the input images and stacks them together. The images are stacked in the order of
114
+ current_frontal, current_lateral, and prior_frontal. The order of images is important, since it must match the
115
+ order of the images in the prompt, which is frontal, then lateral then prior.
116
+
117
+ Args:
118
+ current_frontal (Image.Image):
119
+ The current frontal image.
120
+ current_lateral (Image.Image | None):
121
+ The current lateral image.
122
+ prior_frontal (Image.Image | None):
123
+ The prior frontal image.
124
+
125
+ Returns:
126
+ list[Image.Image]: The normalized images stacked together.
127
+ """
128
+ images = [self._normalize_image(current_frontal)]
129
+ if current_lateral is not None:
130
+ images.append(self._normalize_image(current_lateral))
131
+ if prior_frontal is not None:
132
+ images.append(self._normalize_image(prior_frontal))
133
+ return images
134
+
135
+ @staticmethod
136
+ def _get_section_text_or_missing_text(section: str | None) -> str:
137
+ """
138
+ This function returns the input section text if it is not None and not empty, otherwise it returns a missing
139
+ section text "N/A".
140
+
141
+ Args:
142
+ section (str | None):
143
+ The input section text.
144
+
145
+ Returns:
146
+ str: The section text if it is not None and not empty, otherwise "N/A".
147
+ """
148
+ missing_section_text = "N/A"
149
+ if not isinstance(section, str) or len(section) == 0:
150
+ return missing_section_text
151
+ return section
152
+
153
+ @staticmethod
154
+ def _construct_image_chat_messages_for_reporting(has_prior: bool, has_lateral: bool) -> list[SingleChatMessageType]:
155
+ """
156
+ This function constructs user chat messages based on the presence of the prior and lateral images.
157
+
158
+ Args:
159
+ has_prior (bool):
160
+ A boolean indicating whether the prior image is present.
161
+ has_lateral (bool):
162
+ A boolean indicating whether the lateral image is present.
163
+
164
+ Returns:
165
+ list[SingleChatMessageType]: The image prompt messages in the form of a list of dictionaries.
166
+
167
+ Example:
168
+
169
+ ```python
170
+ >>> _construct_image_chat_messages_for_reporting(has_prior=True, has_lateral=True)
171
+ >>> # [
172
+ >>> # {"index": None, "text": "Given the current frontal image", "type": "text"},
173
+ >>> # {"index": 0, "text": None, "type": "image"},
174
+ >>> # {"index": None, "text": " the current lateral image", "type": "text"},
175
+ >>> # {"index": 1, "text": None, "type": "image"},
176
+ >>> # {"index": None, "text": " and the prior frontal image", "type": "text"},
177
+ >>> # {"index": 2, "text": None, "type": "image"},
178
+ >>> # ]
179
+ ```
180
+ """
181
+
182
+ def _add_single_image_to_chat_messages(prompt_text: str, image_index: int) -> None:
183
+ image_prompt.extend(
184
+ [
185
+ {"index": None, "text": prompt_text, "type": "text"},
186
+ {"index": image_index, "text": None, "type": "image"},
187
+ ]
188
+ )
189
+
190
+ image_prompt: list[SingleChatMessageType] = []
191
+ image_index = 0
192
+ if not has_prior and not has_lateral:
193
+ _add_single_image_to_chat_messages("Given the current frontal image only", image_index)
194
+ else:
195
+ _add_single_image_to_chat_messages("Given the current frontal image", image_index)
196
+ image_index += 1
197
+ if has_prior:
198
+ if has_lateral:
199
+ _add_single_image_to_chat_messages(" the current lateral image", image_index)
200
+ image_index += 1
201
+ _add_single_image_to_chat_messages(" and the prior frontal image", image_index)
202
+ else:
203
+ if has_lateral:
204
+ _add_single_image_to_chat_messages(" and the current lateral image", image_index)
205
+ return image_prompt
206
+
207
+ def _construct_chat_messages_reporting(
208
+ self,
209
+ has_prior: bool,
210
+ has_lateral: bool,
211
+ indication: str | None,
212
+ technique: str | None,
213
+ comparison: str | None,
214
+ prior_report: str | None,
215
+ get_grounding: bool = False,
216
+ assistant_text: str | None = None,
217
+ ) -> ChatMessageListType:
218
+ """
219
+ This function constructs the chat messages for reporting used in the grounded and non-grounded reporting tasks.
220
+
221
+ Args:
222
+ has_prior (bool):
223
+ A boolean indicating whether the prior image is present.
224
+ has_lateral (bool):
225
+ A boolean indicating whether the lateral image is present.
226
+ indication (str | None):
227
+ The indication section text.
228
+ technique (str | None):
229
+ The technique section text.
230
+ comparison (str | None):
231
+ The comparison section text.
232
+ prior_report (str | None):
233
+ The prior report section text.
234
+ get_grounding (bool):
235
+ A boolean indicating whether to get the grounding information.
236
+ assistant_text (str | None):
237
+ The assistant text (can be set to None for ordinary inference).
238
+
239
+ Returns:
240
+ ChatMessageListType: The chat messages for reporting in the form of a list of dictionaries.
241
+
242
+ Example:
243
+
244
+ ```python
245
+ >>> _construct_chat_messages_reporting(
246
+ >>> has_prior=True,
247
+ >>> has_lateral=True,
248
+ >>> indication="indication text from report goes here",
249
+ >>> technique="technique text from report goes here",
250
+ >>> comparison="comparison text from report goes here",
251
+ >>> prior_report="prior reporting text goes here",
252
+ >>> get_grounding=False,
253
+ >>> assistant_text=None,
254
+ >>> )
255
+ >>> # [
256
+ >>> # {"index": None, "text": "Given the current frontal image", "type": "text"},
257
+ >>> # {"index": 0, "text": None, "type": "image"},
258
+ >>> # {"index": None, "text": " the current lateral image", "type": "text"},
259
+ >>> # {"index": 1, "text": None, "type": "image"},
260
+ >>> # {"index": None, "text": " and the prior frontal image", "type": "text"},
261
+ >>> # {"index": 2, "text": None, "type": "image"},
262
+ >>> # {"index": None, "text": " PRIOR_REPORT: prior reporting text goes here", "type": "text"},
263
+ >>> # {"index": None, "text": " Provide a description of the findings in the radiology study in comparison to the "
264
+ >>> # "prior frontal image. INDICATION: indication text from report goes here TECHNIQUE: technique text from report "
265
+ >>> # "goes here COMPARISON: comparison text from report goes here", "type": "text"},
266
+ >>> # ]
267
+ ```
268
+ """
269
+ indication = self._get_section_text_or_missing_text(indication)
270
+ technique = self._get_section_text_or_missing_text(technique)
271
+ comparison = self._get_section_text_or_missing_text(comparison)
272
+ prior_report = self._get_section_text_or_missing_text(prior_report)
273
+
274
+ prompt = self._construct_image_chat_messages_for_reporting(has_prior=has_prior, has_lateral=has_lateral)
275
+
276
+ if has_prior:
277
+ prompt.append({"index": None, "text": f" PRIOR_REPORT: {prior_report}", "type": "text"})
278
+
279
+ if get_grounding:
280
+ prompt.append(
281
+ {
282
+ "index": None,
283
+ "text": " Provide a description of the findings in the radiology study in comparison to the "
284
+ "prior frontal image. Each finding should be described as a self-contained plain-text sentence."
285
+ " If the finding is groundable, locate the finding in the current frontal chest X-ray image, "
286
+ "with bounding boxes indicating all locations where it can be seen in the current frontal "
287
+ "image. Otherwise, generate just the ungrounded finding without bounding boxes. INDICATION: "
288
+ f"{indication} TECHNIQUE: {technique} COMPARISON: {comparison}",
289
+ "type": "text",
290
+ }
291
+ )
292
+ else:
293
+ prompt.append(
294
+ {
295
+ "index": None,
296
+ "text": " Provide a description of the findings in the radiology study in comparison to the "
297
+ f"prior frontal image. INDICATION: {indication} TECHNIQUE: {technique} COMPARISON: "
298
+ f"{comparison}",
299
+ "type": "text",
300
+ }
301
+ )
302
+ messages: ChatMessageListType = [{"content": prompt, "role": "user"}]
303
+ if assistant_text is not None:
304
+ messages.append({"content": [{"index": None, "text": assistant_text, "type": "text"}], "role": "assistant"})
305
+ return messages
306
+
307
+ def _construct_chat_messages_phrase_grounding(
308
+ self, phrase: str, assistant_text: str | None = None
309
+ ) -> ChatMessageListType:
310
+ """
311
+ This function constructs the chat messages for phrase grounding used in the phrase grounding task.
312
+
313
+ Args:
314
+ phrase (str):
315
+ The phrase to be grounded.
316
+ assistant_text (str | None):
317
+ The assistant text (can be set to None for ordinary inference).
318
+
319
+ Returns:
320
+ ChatMessageListType: The chat messages for phrase grounding in the form of a list of dictionaries.
321
+ """
322
+ prompt: list[SingleChatMessageType] = [
323
+ {"index": None, "text": "Given the current frontal image", "type": "text"},
324
+ {"index": 0, "text": None, "type": "image"},
325
+ {
326
+ "index": None,
327
+ "text": f" Repeat the following finding as a grounded phrase with bounding boxes indicating all "
328
+ f"locations where it can be seen in the given chest X-ray image. Finding: {phrase}",
329
+ "type": "text",
330
+ },
331
+ ]
332
+ messages: ChatMessageListType = [{"content": prompt, "role": "user"}]
333
+ if assistant_text is not None:
334
+ messages.append({"content": [{"index": None, "text": assistant_text, "type": "text"}], "role": "assistant"})
335
+ return messages
336
+
337
+ def format_reporting_input(
338
+ self,
339
+ current_frontal: Image.Image,
340
+ current_lateral: Image.Image | None,
341
+ prior_frontal: Image.Image | None,
342
+ indication: str | None,
343
+ technique: str | None,
344
+ comparison: str | None,
345
+ prior_report: str | None,
346
+ get_grounding: bool = False,
347
+ assistant_text: str | None = None,
348
+ ) -> tuple[str, list[Image.Image]]:
349
+ """
350
+ This function formats the reporting prompt for the grounded and non-grounded reporting tasks from the given
351
+ input images and text sections. The images are normalized and stacked together in the right order.
352
+
353
+ Args:
354
+ current_frontal (Image.Image):
355
+ The current frontal image.
356
+ current_lateral (Image.Image | None):
357
+ The current lateral image.
358
+ prior_frontal (Image.Image | None):
359
+ The prior frontal image.
360
+ indication (str | None):
361
+ The indication section text.
362
+ technique (str | None):
363
+ The technique section text.
364
+ comparison (str | None):
365
+ The comparison section text.
366
+ prior_report (str | None):
367
+ The prior report section text.
368
+ get_grounding (bool):
369
+ A boolean indicating whether to construct the prompt for grounded or non-grounded reporting.
370
+ assistant_text (str | None): The assistant text (can be set to None for ordinary inference).
371
+
372
+ Returns:
373
+ tuple[str, list[Image.Image]]: The formatted prompt text and the normalized images stacked in the right order.
374
+ """
375
+ images = self._normalize_and_stack_images(
376
+ current_frontal=current_frontal,
377
+ current_lateral=current_lateral,
378
+ prior_frontal=prior_frontal,
379
+ )
380
+ messages = self._construct_chat_messages_reporting(
381
+ has_prior=prior_frontal is not None,
382
+ has_lateral=current_lateral is not None,
383
+ indication=indication,
384
+ technique=technique,
385
+ comparison=comparison,
386
+ prior_report=prior_report,
387
+ get_grounding=get_grounding,
388
+ assistant_text=assistant_text,
389
+ )
390
+ add_generation_prompt = assistant_text is None
391
+ text = self.tokenizer.apply_chat_template(messages, add_generation_prompt=add_generation_prompt, tokenize=False)
392
+ return text, images
393
+
394
+ def format_phrase_grounding_input(
395
+ self,
396
+ frontal_image: Image.Image,
397
+ phrase: str,
398
+ assistant_text: str | None = None,
399
+ ) -> tuple[str, list[Image.Image]]:
400
+ """
401
+ This function formats the phrase grounding prompt for the phrase grounding task from the given input
402
+ image and phrase.
403
+
404
+ Args:
405
+ frontal_image (Image.Image):
406
+ The frontal image.
407
+ phrase (str):
408
+ The phrase to be grounded.
409
+ assistant_text (str | None):
410
+ The assistant text (can be set to None for ordinary inference).
411
+
412
+ Returns:
413
+ tuple[str, list[Image.Image]]: The formatted phrase grounding prompt text and the normalized image.
414
+ """
415
+ images = self._normalize_and_stack_images(
416
+ current_frontal=frontal_image,
417
+ current_lateral=None,
418
+ prior_frontal=None,
419
+ )
420
+ messages = self._construct_chat_messages_phrase_grounding(phrase)
421
+ add_generation_prompt = assistant_text is None
422
+ text = self.tokenizer.apply_chat_template(messages, add_generation_prompt=add_generation_prompt, tokenize=False)
423
+ return text, images
424
+
425
+ def format_and_preprocess_reporting_input(
426
+ self,
427
+ current_frontal: Image.Image,
428
+ current_lateral: Image.Image | None,
429
+ prior_frontal: Image.Image | None,
430
+ indication: str | None,
431
+ technique: str | None,
432
+ comparison: str | None,
433
+ prior_report: str | None,
434
+ get_grounding: bool = False,
435
+ assistant_text: str | None = None,
436
+ **kwargs: Any,
437
+ ) -> BatchFeature:
438
+ """
439
+ This function formats and then preprocesses the input for the grounded and non-grounded reporting tasks from
440
+ the given input images and text sections and returns the batch feature for the model. It calls format_reporting_input
441
+ internally to format the input prompt and stack the images together in the right order.
442
+
443
+ Args:
444
+ current_frontal (Image.Image):
445
+ The current frontal image.
446
+ current_lateral (Image.Image | None):
447
+ The current lateral image.
448
+ prior_frontal (Image.Image | None):
449
+ The prior frontal image.
450
+ indication (str | None):
451
+ The indication section text.
452
+ technique (str | None):
453
+ The technique section text.
454
+ comparison (str | None):
455
+ The comparison section text.
456
+ prior_report (str | None):
457
+ The prior report section text.
458
+ get_grounding (bool):
459
+ A boolean indicating whether to preprocess the input for grounded or non-grounded reporting.
460
+ assistant_text (str | None):
461
+ The assistant text (can be set to None for ordinary inference).
462
+
463
+ Returns:
464
+ BatchFeature: The batch feature for the model, ready to be passed to the model.
465
+
466
+ """
467
+ text, images = self.format_reporting_input(
468
+ current_frontal=current_frontal,
469
+ current_lateral=current_lateral,
470
+ prior_frontal=prior_frontal,
471
+ indication=indication,
472
+ technique=technique,
473
+ comparison=comparison,
474
+ prior_report=prior_report,
475
+ get_grounding=get_grounding,
476
+ assistant_text=assistant_text,
477
+ )
478
+ return self(text=text, images=images, **kwargs)
479
+
480
+ def format_and_preprocess_phrase_grounding_input(
481
+ self,
482
+ frontal_image: Image.Image,
483
+ phrase: str,
484
+ assistant_text: str | None = None,
485
+ **kwargs: Any,
486
+ ) -> BatchFeature:
487
+ """
488
+ This function formats and then processes the input for the phrase grounding task from the given input image and
489
+ phrase and returns the batch feature for the model. It calls format_phrase_grounding_input internally to format
490
+ the input prompt and normalize the image.
491
+
492
+ Args:
493
+ frontal_image (Image.Image):
494
+ The frontal image.
495
+ phrase (str):
496
+ The phrase to be grounded.
497
+ assistant_text (str | None):
498
+ The assistant text (can be set to None for ordinary inference).
499
+
500
+ Returns:
501
+ BatchFeature: The batch feature for the model, ready to be passed to the model.
502
+ """
503
+ text, images = self.format_phrase_grounding_input(
504
+ frontal_image=frontal_image,
505
+ phrase=phrase,
506
+ assistant_text=assistant_text,
507
+ )
508
+ return self(text=text, images=images, **kwargs)
509
+
510
+ def _get_text_between_delimiters(self, text: str, begin_token: str, end_token: str) -> list[str]:
511
+ """
512
+ This function splits the input text into a list of substrings beased on the given begin and end tokens.
513
+
514
+ Args:
515
+ text (str):
516
+ The input text to be split.
517
+ begin_token (str):
518
+ The begin token.
519
+ end_token (str):
520
+ The end token.
521
+
522
+ Returns:
523
+ list[str]: The list of substrings between the given begin and end tokens.
524
+
525
+ Example:
526
+
527
+ ```python
528
+ >>> _get_text_between_delimiters("<obj>This is a grounded phrase</obj>. <obj>This is another grounded phrase</obj>.", "<obj>", "</obj>")
529
+ >>> # ["grounded phrase", "This is another grounded phrase"]
530
+
531
+ >>> _get_text_between_delimiters("<box><x10><y20><x30><y40></box><box><x50><y60><x70><y80></box>", "<box>", "</box>")
532
+ >>> # ["<x10><y20><x30><y40>", "<x50><y60><x70><y80>"]
533
+ ```
534
+ """
535
+ split_text = []
536
+ while begin_token in text:
537
+ assert text.startswith(begin_token)
538
+ end_index = text.find(end_token)
539
+ assert end_index != -1
540
+ split_text.append(text[len(begin_token) : end_index])
541
+ text = text[end_index + len(end_token) :]
542
+ assert len(text) == 0
543
+ return split_text
544
+
545
+ def convert_output_to_plaintext_or_grounded_sequence(
546
+ self, text: str
547
+ ) -> str | list[tuple[str, list[BoxType] | None]]:
548
+ """
549
+ This function converts the input text to a grounded sequence by extracting the grounded phrases and bounding
550
+ boxes from the text. If the text is plaintext without any grounded phrases, it returns the text as is.
551
+
552
+ Args:
553
+ text (str):
554
+ The input text to be converted.
555
+
556
+ Returns:
557
+ str | list[tuple[str, list[BoxType] | None]]: The grounded sequence.
558
+
559
+ Example:
560
+
561
+ ```python
562
+ >>> convert_output_to_plaintext_or_grounded_sequence("<obj>grounded phrase <box><x55><y45><x70><y56></box></obj><obj>ungrounded phrase</obj>")
563
+ >>> # [
564
+ >>> # ("grounded phrase", [(0.55, 0.45, 0.70, 0.56)]),
565
+ >>> # ("ungrounded phrase", None),
566
+ >>> # ]
567
+
568
+ >>> convert_output_to_plaintext_or_grounded_sequence("plain text")
569
+ >>> # "plain text"
570
+ ```
571
+ """
572
+ text = text.strip()
573
+
574
+ # Plain text
575
+ if not any(
576
+ [
577
+ self.phrase_start_token in text,
578
+ self.phrase_end_token in text,
579
+ self.box_start_token in text,
580
+ self.box_end_token in text,
581
+ ]
582
+ ):
583
+ return text
584
+
585
+ # One or more grounded phrases
586
+ grounded_phrase_texts = self._get_text_between_delimiters(text, self.phrase_start_token, self.phrase_end_token)
587
+ grounded_phrases: list[tuple[str, list[BoxType] | None]] = []
588
+ for grounded_phrase_text in grounded_phrase_texts:
589
+ if self.box_start_token in grounded_phrase_text or self.box_end_token in grounded_phrase_text:
590
+ first_box_start_index = grounded_phrase_text.find(self.box_start_token)
591
+ phrase_text = grounded_phrase_text[:first_box_start_index].strip()
592
+ boxes_text = grounded_phrase_text[first_box_start_index:]
593
+ boxes_text_list = self._get_text_between_delimiters(
594
+ boxes_text, self.box_start_token, self.box_end_token
595
+ )
596
+ boxes: list[BoxType] = []
597
+ for box_text in boxes_text_list:
598
+ # extract from <x_><y_><x_><y_>
599
+ regex = r"<x(\d+?)><y(\d+?)><x(\d+?)><y(\d+?)>"
600
+ match = re.search(regex, box_text)
601
+ if match:
602
+ x_min, y_min, x_max, y_max = match.groups()
603
+ box: BoxType = tuple( # type: ignore[assignment]
604
+ (int(coord) + 0.5) / self.num_box_coord_bins for coord in (x_min, y_min, x_max, y_max)
605
+ )
606
+ assert all(0 <= coord <= 1 for coord in box), f"Invalid box coordinates: {box}"
607
+ boxes.append(box)
608
+ else:
609
+ raise ValueError(f"Invalid box coordinates: {box_text} not matching regex {regex}")
610
+ grounded_phrases.append((phrase_text, boxes))
611
+ else:
612
+ grounded_phrases.append((grounded_phrase_text.lstrip(), None))
613
+ return grounded_phrases
614
+
615
+ @staticmethod
616
+ def adjust_box_for_original_image_size(box: BoxType, width: int, height: int) -> BoxType:
617
+ """
618
+ This function adjusts the bounding boxes from the MAIRA-2 model output to account for the image processor
619
+ cropping the image to be square prior to the model forward pass. The box coordinates are adjusted to be
620
+ relative to the original shape of the image assuming the image processor cropped the image based on the length
621
+ of the shortest side.
622
+
623
+ Args:
624
+ box (BoxType):
625
+ The box to be adjusted, normalised to (0, 1).
626
+ width (int):
627
+ Original width of the image, in pixels.
628
+ height (int):
629
+ Original height of the image, in pixels.
630
+
631
+ Returns:
632
+ BoxType: The box normalised relative to the original size of the image.
633
+ """
634
+ crop_width = crop_height = min(width, height)
635
+ x_offset = (width - crop_width) // 2
636
+ y_offset = (height - crop_height) // 2
637
+
638
+ norm_x_min, norm_y_min, norm_x_max, norm_y_max = box
639
+
640
+ abs_x_min = int(norm_x_min * crop_width + x_offset)
641
+ abs_x_max = int(norm_x_max * crop_width + x_offset)
642
+ abs_y_min = int(norm_y_min * crop_height + y_offset)
643
+ abs_y_max = int(norm_y_max * crop_height + y_offset)
644
+
645
+ adjusted_norm_x_min = abs_x_min / width
646
+ adjusted_norm_x_max = abs_x_max / width
647
+ adjusted_norm_y_min = abs_y_min / height
648
+ adjusted_norm_y_max = abs_y_max / height
649
+
650
+ return (adjusted_norm_x_min, adjusted_norm_y_min, adjusted_norm_x_max, adjusted_norm_y_max)
651
+
652
+ def __call__(
653
+ self,
654
+ images: ImageInput = None,
655
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
656
+ audio=None,
657
+ videos=None,
658
+ **kwargs: Unpack[LlavaProcessorKwargs],
659
+ ) -> BatchFeature:
660
+ """
661
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
662
+ and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
663
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
664
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
665
+ of the above two methods for more information.
666
+
667
+ Args:
668
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
669
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
670
+ tensor. Both channels-first and channels-last formats are supported.
671
+ text (`str`, `List[str]`, `List[List[str]]`):
672
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
673
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
674
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
675
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
676
+ If set, will return tensors of a particular framework. Acceptable values are:
677
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
678
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
679
+ - `'np'`: Return NumPy `np.ndarray` objects.
680
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
681
+
682
+ Returns:
683
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
684
+
685
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
686
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
687
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
688
+ `None`).
689
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
690
+ """
691
+ if images is None and text is None:
692
+ raise ValueError("You have to specify at least one of `images` or `text`.")
693
+
694
+ # check if images and text inputs are reversed for BC
695
+ images, text = _validate_images_text_input_order(images, text)
696
+
697
+ output_kwargs = self._merge_kwargs(
698
+ LlavaProcessorKwargs,
699
+ tokenizer_init_kwargs=self.tokenizer.init_kwargs,
700
+ **kwargs,
701
+ )
702
+ if images is not None:
703
+ image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
704
+ else:
705
+ image_inputs = {}
706
+
707
+ if isinstance(text, str):
708
+ text = [text]
709
+ elif not isinstance(text, list) and not isinstance(text[0], str):
710
+ raise ValueError("Invalid input text. Please provide a string, or a list of strings")
711
+
712
+ # try to expand inputs in processing if we have the necessary parts
713
+ prompt_strings = text
714
+ if image_inputs.get("pixel_values") is not None:
715
+ if self.patch_size is not None and self.vision_feature_select_strategy is not None:
716
+ # Replace the image token with the expanded image token sequence
717
+ pixel_values = image_inputs["pixel_values"]
718
+ height, width = get_image_size(to_numpy_array(pixel_values[0]))
719
+ num_image_tokens = (height // self.patch_size) * (width // self.patch_size) + 1
720
+ if self.vision_feature_select_strategy == "default":
721
+ num_image_tokens -= 1
722
+
723
+ prompt_strings = []
724
+ for sample in text:
725
+ sample = sample.replace(self.image_token, self.image_token * num_image_tokens)
726
+ prompt_strings.append(sample)
727
+
728
+ text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
729
+ return BatchFeature(data={**text_inputs, **image_inputs})
processor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "box_end_token": "</box>",
3
+ "box_start_token": "<box>",
4
+ "image_token": "<image>",
5
+ "num_box_coord_bins": 100,
6
+ "patch_size": 2,
7
+ "phrase_end_token": "</obj>",
8
+ "phrase_start_token": "<obj>",
9
+ "processor_class": "Maira2Processor",
10
+ "vision_feature_select_strategy": "default",
11
+ "auto_map": {
12
+ "AutoProcessor": "processing_maira2.Maira2Processor"
13
+ }
14
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,1701 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "<obj>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "32001": {
39
+ "content": "</obj>",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "32002": {
47
+ "content": "<x0>",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "32003": {
55
+ "content": "<x1>",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "32004": {
63
+ "content": "<x2>",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "32005": {
71
+ "content": "<x3>",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "32006": {
79
+ "content": "<x4>",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "32007": {
87
+ "content": "<x5>",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "32008": {
95
+ "content": "<x6>",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "32009": {
103
+ "content": "<x7>",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "32010": {
111
+ "content": "<x8>",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "32011": {
119
+ "content": "<x9>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "32012": {
127
+ "content": "<x10>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "32013": {
135
+ "content": "<x11>",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "32014": {
143
+ "content": "<x12>",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "32015": {
151
+ "content": "<x13>",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "32016": {
159
+ "content": "<x14>",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "32017": {
167
+ "content": "<x15>",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "32018": {
175
+ "content": "<x16>",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "32019": {
183
+ "content": "<x17>",
184
+ "lstrip": false,
185
+ "normalized": true,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "32020": {
191
+ "content": "<x18>",
192
+ "lstrip": false,
193
+ "normalized": true,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "32021": {
199
+ "content": "<x19>",
200
+ "lstrip": false,
201
+ "normalized": true,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "32022": {
207
+ "content": "<x20>",
208
+ "lstrip": false,
209
+ "normalized": true,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ },
214
+ "32023": {
215
+ "content": "<x21>",
216
+ "lstrip": false,
217
+ "normalized": true,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": false
221
+ },
222
+ "32024": {
223
+ "content": "<x22>",
224
+ "lstrip": false,
225
+ "normalized": true,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": false
229
+ },
230
+ "32025": {
231
+ "content": "<x23>",
232
+ "lstrip": false,
233
+ "normalized": true,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": false
237
+ },
238
+ "32026": {
239
+ "content": "<x24>",
240
+ "lstrip": false,
241
+ "normalized": true,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": false
245
+ },
246
+ "32027": {
247
+ "content": "<x25>",
248
+ "lstrip": false,
249
+ "normalized": true,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": false
253
+ },
254
+ "32028": {
255
+ "content": "<x26>",
256
+ "lstrip": false,
257
+ "normalized": true,
258
+ "rstrip": false,
259
+ "single_word": false,
260
+ "special": false
261
+ },
262
+ "32029": {
263
+ "content": "<x27>",
264
+ "lstrip": false,
265
+ "normalized": true,
266
+ "rstrip": false,
267
+ "single_word": false,
268
+ "special": false
269
+ },
270
+ "32030": {
271
+ "content": "<x28>",
272
+ "lstrip": false,
273
+ "normalized": true,
274
+ "rstrip": false,
275
+ "single_word": false,
276
+ "special": false
277
+ },
278
+ "32031": {
279
+ "content": "<x29>",
280
+ "lstrip": false,
281
+ "normalized": true,
282
+ "rstrip": false,
283
+ "single_word": false,
284
+ "special": false
285
+ },
286
+ "32032": {
287
+ "content": "<x30>",
288
+ "lstrip": false,
289
+ "normalized": true,
290
+ "rstrip": false,
291
+ "single_word": false,
292
+ "special": false
293
+ },
294
+ "32033": {
295
+ "content": "<x31>",
296
+ "lstrip": false,
297
+ "normalized": true,
298
+ "rstrip": false,
299
+ "single_word": false,
300
+ "special": false
301
+ },
302
+ "32034": {
303
+ "content": "<x32>",
304
+ "lstrip": false,
305
+ "normalized": true,
306
+ "rstrip": false,
307
+ "single_word": false,
308
+ "special": false
309
+ },
310
+ "32035": {
311
+ "content": "<x33>",
312
+ "lstrip": false,
313
+ "normalized": true,
314
+ "rstrip": false,
315
+ "single_word": false,
316
+ "special": false
317
+ },
318
+ "32036": {
319
+ "content": "<x34>",
320
+ "lstrip": false,
321
+ "normalized": true,
322
+ "rstrip": false,
323
+ "single_word": false,
324
+ "special": false
325
+ },
326
+ "32037": {
327
+ "content": "<x35>",
328
+ "lstrip": false,
329
+ "normalized": true,
330
+ "rstrip": false,
331
+ "single_word": false,
332
+ "special": false
333
+ },
334
+ "32038": {
335
+ "content": "<x36>",
336
+ "lstrip": false,
337
+ "normalized": true,
338
+ "rstrip": false,
339
+ "single_word": false,
340
+ "special": false
341
+ },
342
+ "32039": {
343
+ "content": "<x37>",
344
+ "lstrip": false,
345
+ "normalized": true,
346
+ "rstrip": false,
347
+ "single_word": false,
348
+ "special": false
349
+ },
350
+ "32040": {
351
+ "content": "<x38>",
352
+ "lstrip": false,
353
+ "normalized": true,
354
+ "rstrip": false,
355
+ "single_word": false,
356
+ "special": false
357
+ },
358
+ "32041": {
359
+ "content": "<x39>",
360
+ "lstrip": false,
361
+ "normalized": true,
362
+ "rstrip": false,
363
+ "single_word": false,
364
+ "special": false
365
+ },
366
+ "32042": {
367
+ "content": "<x40>",
368
+ "lstrip": false,
369
+ "normalized": true,
370
+ "rstrip": false,
371
+ "single_word": false,
372
+ "special": false
373
+ },
374
+ "32043": {
375
+ "content": "<x41>",
376
+ "lstrip": false,
377
+ "normalized": true,
378
+ "rstrip": false,
379
+ "single_word": false,
380
+ "special": false
381
+ },
382
+ "32044": {
383
+ "content": "<x42>",
384
+ "lstrip": false,
385
+ "normalized": true,
386
+ "rstrip": false,
387
+ "single_word": false,
388
+ "special": false
389
+ },
390
+ "32045": {
391
+ "content": "<x43>",
392
+ "lstrip": false,
393
+ "normalized": true,
394
+ "rstrip": false,
395
+ "single_word": false,
396
+ "special": false
397
+ },
398
+ "32046": {
399
+ "content": "<x44>",
400
+ "lstrip": false,
401
+ "normalized": true,
402
+ "rstrip": false,
403
+ "single_word": false,
404
+ "special": false
405
+ },
406
+ "32047": {
407
+ "content": "<x45>",
408
+ "lstrip": false,
409
+ "normalized": true,
410
+ "rstrip": false,
411
+ "single_word": false,
412
+ "special": false
413
+ },
414
+ "32048": {
415
+ "content": "<x46>",
416
+ "lstrip": false,
417
+ "normalized": true,
418
+ "rstrip": false,
419
+ "single_word": false,
420
+ "special": false
421
+ },
422
+ "32049": {
423
+ "content": "<x47>",
424
+ "lstrip": false,
425
+ "normalized": true,
426
+ "rstrip": false,
427
+ "single_word": false,
428
+ "special": false
429
+ },
430
+ "32050": {
431
+ "content": "<x48>",
432
+ "lstrip": false,
433
+ "normalized": true,
434
+ "rstrip": false,
435
+ "single_word": false,
436
+ "special": false
437
+ },
438
+ "32051": {
439
+ "content": "<x49>",
440
+ "lstrip": false,
441
+ "normalized": true,
442
+ "rstrip": false,
443
+ "single_word": false,
444
+ "special": false
445
+ },
446
+ "32052": {
447
+ "content": "<x50>",
448
+ "lstrip": false,
449
+ "normalized": true,
450
+ "rstrip": false,
451
+ "single_word": false,
452
+ "special": false
453
+ },
454
+ "32053": {
455
+ "content": "<x51>",
456
+ "lstrip": false,
457
+ "normalized": true,
458
+ "rstrip": false,
459
+ "single_word": false,
460
+ "special": false
461
+ },
462
+ "32054": {
463
+ "content": "<x52>",
464
+ "lstrip": false,
465
+ "normalized": true,
466
+ "rstrip": false,
467
+ "single_word": false,
468
+ "special": false
469
+ },
470
+ "32055": {
471
+ "content": "<x53>",
472
+ "lstrip": false,
473
+ "normalized": true,
474
+ "rstrip": false,
475
+ "single_word": false,
476
+ "special": false
477
+ },
478
+ "32056": {
479
+ "content": "<x54>",
480
+ "lstrip": false,
481
+ "normalized": true,
482
+ "rstrip": false,
483
+ "single_word": false,
484
+ "special": false
485
+ },
486
+ "32057": {
487
+ "content": "<x55>",
488
+ "lstrip": false,
489
+ "normalized": true,
490
+ "rstrip": false,
491
+ "single_word": false,
492
+ "special": false
493
+ },
494
+ "32058": {
495
+ "content": "<x56>",
496
+ "lstrip": false,
497
+ "normalized": true,
498
+ "rstrip": false,
499
+ "single_word": false,
500
+ "special": false
501
+ },
502
+ "32059": {
503
+ "content": "<x57>",
504
+ "lstrip": false,
505
+ "normalized": true,
506
+ "rstrip": false,
507
+ "single_word": false,
508
+ "special": false
509
+ },
510
+ "32060": {
511
+ "content": "<x58>",
512
+ "lstrip": false,
513
+ "normalized": true,
514
+ "rstrip": false,
515
+ "single_word": false,
516
+ "special": false
517
+ },
518
+ "32061": {
519
+ "content": "<x59>",
520
+ "lstrip": false,
521
+ "normalized": true,
522
+ "rstrip": false,
523
+ "single_word": false,
524
+ "special": false
525
+ },
526
+ "32062": {
527
+ "content": "<x60>",
528
+ "lstrip": false,
529
+ "normalized": true,
530
+ "rstrip": false,
531
+ "single_word": false,
532
+ "special": false
533
+ },
534
+ "32063": {
535
+ "content": "<x61>",
536
+ "lstrip": false,
537
+ "normalized": true,
538
+ "rstrip": false,
539
+ "single_word": false,
540
+ "special": false
541
+ },
542
+ "32064": {
543
+ "content": "<x62>",
544
+ "lstrip": false,
545
+ "normalized": true,
546
+ "rstrip": false,
547
+ "single_word": false,
548
+ "special": false
549
+ },
550
+ "32065": {
551
+ "content": "<x63>",
552
+ "lstrip": false,
553
+ "normalized": true,
554
+ "rstrip": false,
555
+ "single_word": false,
556
+ "special": false
557
+ },
558
+ "32066": {
559
+ "content": "<x64>",
560
+ "lstrip": false,
561
+ "normalized": true,
562
+ "rstrip": false,
563
+ "single_word": false,
564
+ "special": false
565
+ },
566
+ "32067": {
567
+ "content": "<x65>",
568
+ "lstrip": false,
569
+ "normalized": true,
570
+ "rstrip": false,
571
+ "single_word": false,
572
+ "special": false
573
+ },
574
+ "32068": {
575
+ "content": "<x66>",
576
+ "lstrip": false,
577
+ "normalized": true,
578
+ "rstrip": false,
579
+ "single_word": false,
580
+ "special": false
581
+ },
582
+ "32069": {
583
+ "content": "<x67>",
584
+ "lstrip": false,
585
+ "normalized": true,
586
+ "rstrip": false,
587
+ "single_word": false,
588
+ "special": false
589
+ },
590
+ "32070": {
591
+ "content": "<x68>",
592
+ "lstrip": false,
593
+ "normalized": true,
594
+ "rstrip": false,
595
+ "single_word": false,
596
+ "special": false
597
+ },
598
+ "32071": {
599
+ "content": "<x69>",
600
+ "lstrip": false,
601
+ "normalized": true,
602
+ "rstrip": false,
603
+ "single_word": false,
604
+ "special": false
605
+ },
606
+ "32072": {
607
+ "content": "<x70>",
608
+ "lstrip": false,
609
+ "normalized": true,
610
+ "rstrip": false,
611
+ "single_word": false,
612
+ "special": false
613
+ },
614
+ "32073": {
615
+ "content": "<x71>",
616
+ "lstrip": false,
617
+ "normalized": true,
618
+ "rstrip": false,
619
+ "single_word": false,
620
+ "special": false
621
+ },
622
+ "32074": {
623
+ "content": "<x72>",
624
+ "lstrip": false,
625
+ "normalized": true,
626
+ "rstrip": false,
627
+ "single_word": false,
628
+ "special": false
629
+ },
630
+ "32075": {
631
+ "content": "<x73>",
632
+ "lstrip": false,
633
+ "normalized": true,
634
+ "rstrip": false,
635
+ "single_word": false,
636
+ "special": false
637
+ },
638
+ "32076": {
639
+ "content": "<x74>",
640
+ "lstrip": false,
641
+ "normalized": true,
642
+ "rstrip": false,
643
+ "single_word": false,
644
+ "special": false
645
+ },
646
+ "32077": {
647
+ "content": "<x75>",
648
+ "lstrip": false,
649
+ "normalized": true,
650
+ "rstrip": false,
651
+ "single_word": false,
652
+ "special": false
653
+ },
654
+ "32078": {
655
+ "content": "<x76>",
656
+ "lstrip": false,
657
+ "normalized": true,
658
+ "rstrip": false,
659
+ "single_word": false,
660
+ "special": false
661
+ },
662
+ "32079": {
663
+ "content": "<x77>",
664
+ "lstrip": false,
665
+ "normalized": true,
666
+ "rstrip": false,
667
+ "single_word": false,
668
+ "special": false
669
+ },
670
+ "32080": {
671
+ "content": "<x78>",
672
+ "lstrip": false,
673
+ "normalized": true,
674
+ "rstrip": false,
675
+ "single_word": false,
676
+ "special": false
677
+ },
678
+ "32081": {
679
+ "content": "<x79>",
680
+ "lstrip": false,
681
+ "normalized": true,
682
+ "rstrip": false,
683
+ "single_word": false,
684
+ "special": false
685
+ },
686
+ "32082": {
687
+ "content": "<x80>",
688
+ "lstrip": false,
689
+ "normalized": true,
690
+ "rstrip": false,
691
+ "single_word": false,
692
+ "special": false
693
+ },
694
+ "32083": {
695
+ "content": "<x81>",
696
+ "lstrip": false,
697
+ "normalized": true,
698
+ "rstrip": false,
699
+ "single_word": false,
700
+ "special": false
701
+ },
702
+ "32084": {
703
+ "content": "<x82>",
704
+ "lstrip": false,
705
+ "normalized": true,
706
+ "rstrip": false,
707
+ "single_word": false,
708
+ "special": false
709
+ },
710
+ "32085": {
711
+ "content": "<x83>",
712
+ "lstrip": false,
713
+ "normalized": true,
714
+ "rstrip": false,
715
+ "single_word": false,
716
+ "special": false
717
+ },
718
+ "32086": {
719
+ "content": "<x84>",
720
+ "lstrip": false,
721
+ "normalized": true,
722
+ "rstrip": false,
723
+ "single_word": false,
724
+ "special": false
725
+ },
726
+ "32087": {
727
+ "content": "<x85>",
728
+ "lstrip": false,
729
+ "normalized": true,
730
+ "rstrip": false,
731
+ "single_word": false,
732
+ "special": false
733
+ },
734
+ "32088": {
735
+ "content": "<x86>",
736
+ "lstrip": false,
737
+ "normalized": true,
738
+ "rstrip": false,
739
+ "single_word": false,
740
+ "special": false
741
+ },
742
+ "32089": {
743
+ "content": "<x87>",
744
+ "lstrip": false,
745
+ "normalized": true,
746
+ "rstrip": false,
747
+ "single_word": false,
748
+ "special": false
749
+ },
750
+ "32090": {
751
+ "content": "<x88>",
752
+ "lstrip": false,
753
+ "normalized": true,
754
+ "rstrip": false,
755
+ "single_word": false,
756
+ "special": false
757
+ },
758
+ "32091": {
759
+ "content": "<x89>",
760
+ "lstrip": false,
761
+ "normalized": true,
762
+ "rstrip": false,
763
+ "single_word": false,
764
+ "special": false
765
+ },
766
+ "32092": {
767
+ "content": "<x90>",
768
+ "lstrip": false,
769
+ "normalized": true,
770
+ "rstrip": false,
771
+ "single_word": false,
772
+ "special": false
773
+ },
774
+ "32093": {
775
+ "content": "<x91>",
776
+ "lstrip": false,
777
+ "normalized": true,
778
+ "rstrip": false,
779
+ "single_word": false,
780
+ "special": false
781
+ },
782
+ "32094": {
783
+ "content": "<x92>",
784
+ "lstrip": false,
785
+ "normalized": true,
786
+ "rstrip": false,
787
+ "single_word": false,
788
+ "special": false
789
+ },
790
+ "32095": {
791
+ "content": "<x93>",
792
+ "lstrip": false,
793
+ "normalized": true,
794
+ "rstrip": false,
795
+ "single_word": false,
796
+ "special": false
797
+ },
798
+ "32096": {
799
+ "content": "<x94>",
800
+ "lstrip": false,
801
+ "normalized": true,
802
+ "rstrip": false,
803
+ "single_word": false,
804
+ "special": false
805
+ },
806
+ "32097": {
807
+ "content": "<x95>",
808
+ "lstrip": false,
809
+ "normalized": true,
810
+ "rstrip": false,
811
+ "single_word": false,
812
+ "special": false
813
+ },
814
+ "32098": {
815
+ "content": "<x96>",
816
+ "lstrip": false,
817
+ "normalized": true,
818
+ "rstrip": false,
819
+ "single_word": false,
820
+ "special": false
821
+ },
822
+ "32099": {
823
+ "content": "<x97>",
824
+ "lstrip": false,
825
+ "normalized": true,
826
+ "rstrip": false,
827
+ "single_word": false,
828
+ "special": false
829
+ },
830
+ "32100": {
831
+ "content": "<x98>",
832
+ "lstrip": false,
833
+ "normalized": true,
834
+ "rstrip": false,
835
+ "single_word": false,
836
+ "special": false
837
+ },
838
+ "32101": {
839
+ "content": "<x99>",
840
+ "lstrip": false,
841
+ "normalized": true,
842
+ "rstrip": false,
843
+ "single_word": false,
844
+ "special": false
845
+ },
846
+ "32102": {
847
+ "content": "<y0>",
848
+ "lstrip": false,
849
+ "normalized": true,
850
+ "rstrip": false,
851
+ "single_word": false,
852
+ "special": false
853
+ },
854
+ "32103": {
855
+ "content": "<y1>",
856
+ "lstrip": false,
857
+ "normalized": true,
858
+ "rstrip": false,
859
+ "single_word": false,
860
+ "special": false
861
+ },
862
+ "32104": {
863
+ "content": "<y2>",
864
+ "lstrip": false,
865
+ "normalized": true,
866
+ "rstrip": false,
867
+ "single_word": false,
868
+ "special": false
869
+ },
870
+ "32105": {
871
+ "content": "<y3>",
872
+ "lstrip": false,
873
+ "normalized": true,
874
+ "rstrip": false,
875
+ "single_word": false,
876
+ "special": false
877
+ },
878
+ "32106": {
879
+ "content": "<y4>",
880
+ "lstrip": false,
881
+ "normalized": true,
882
+ "rstrip": false,
883
+ "single_word": false,
884
+ "special": false
885
+ },
886
+ "32107": {
887
+ "content": "<y5>",
888
+ "lstrip": false,
889
+ "normalized": true,
890
+ "rstrip": false,
891
+ "single_word": false,
892
+ "special": false
893
+ },
894
+ "32108": {
895
+ "content": "<y6>",
896
+ "lstrip": false,
897
+ "normalized": true,
898
+ "rstrip": false,
899
+ "single_word": false,
900
+ "special": false
901
+ },
902
+ "32109": {
903
+ "content": "<y7>",
904
+ "lstrip": false,
905
+ "normalized": true,
906
+ "rstrip": false,
907
+ "single_word": false,
908
+ "special": false
909
+ },
910
+ "32110": {
911
+ "content": "<y8>",
912
+ "lstrip": false,
913
+ "normalized": true,
914
+ "rstrip": false,
915
+ "single_word": false,
916
+ "special": false
917
+ },
918
+ "32111": {
919
+ "content": "<y9>",
920
+ "lstrip": false,
921
+ "normalized": true,
922
+ "rstrip": false,
923
+ "single_word": false,
924
+ "special": false
925
+ },
926
+ "32112": {
927
+ "content": "<y10>",
928
+ "lstrip": false,
929
+ "normalized": true,
930
+ "rstrip": false,
931
+ "single_word": false,
932
+ "special": false
933
+ },
934
+ "32113": {
935
+ "content": "<y11>",
936
+ "lstrip": false,
937
+ "normalized": true,
938
+ "rstrip": false,
939
+ "single_word": false,
940
+ "special": false
941
+ },
942
+ "32114": {
943
+ "content": "<y12>",
944
+ "lstrip": false,
945
+ "normalized": true,
946
+ "rstrip": false,
947
+ "single_word": false,
948
+ "special": false
949
+ },
950
+ "32115": {
951
+ "content": "<y13>",
952
+ "lstrip": false,
953
+ "normalized": true,
954
+ "rstrip": false,
955
+ "single_word": false,
956
+ "special": false
957
+ },
958
+ "32116": {
959
+ "content": "<y14>",
960
+ "lstrip": false,
961
+ "normalized": true,
962
+ "rstrip": false,
963
+ "single_word": false,
964
+ "special": false
965
+ },
966
+ "32117": {
967
+ "content": "<y15>",
968
+ "lstrip": false,
969
+ "normalized": true,
970
+ "rstrip": false,
971
+ "single_word": false,
972
+ "special": false
973
+ },
974
+ "32118": {
975
+ "content": "<y16>",
976
+ "lstrip": false,
977
+ "normalized": true,
978
+ "rstrip": false,
979
+ "single_word": false,
980
+ "special": false
981
+ },
982
+ "32119": {
983
+ "content": "<y17>",
984
+ "lstrip": false,
985
+ "normalized": true,
986
+ "rstrip": false,
987
+ "single_word": false,
988
+ "special": false
989
+ },
990
+ "32120": {
991
+ "content": "<y18>",
992
+ "lstrip": false,
993
+ "normalized": true,
994
+ "rstrip": false,
995
+ "single_word": false,
996
+ "special": false
997
+ },
998
+ "32121": {
999
+ "content": "<y19>",
1000
+ "lstrip": false,
1001
+ "normalized": true,
1002
+ "rstrip": false,
1003
+ "single_word": false,
1004
+ "special": false
1005
+ },
1006
+ "32122": {
1007
+ "content": "<y20>",
1008
+ "lstrip": false,
1009
+ "normalized": true,
1010
+ "rstrip": false,
1011
+ "single_word": false,
1012
+ "special": false
1013
+ },
1014
+ "32123": {
1015
+ "content": "<y21>",
1016
+ "lstrip": false,
1017
+ "normalized": true,
1018
+ "rstrip": false,
1019
+ "single_word": false,
1020
+ "special": false
1021
+ },
1022
+ "32124": {
1023
+ "content": "<y22>",
1024
+ "lstrip": false,
1025
+ "normalized": true,
1026
+ "rstrip": false,
1027
+ "single_word": false,
1028
+ "special": false
1029
+ },
1030
+ "32125": {
1031
+ "content": "<y23>",
1032
+ "lstrip": false,
1033
+ "normalized": true,
1034
+ "rstrip": false,
1035
+ "single_word": false,
1036
+ "special": false
1037
+ },
1038
+ "32126": {
1039
+ "content": "<y24>",
1040
+ "lstrip": false,
1041
+ "normalized": true,
1042
+ "rstrip": false,
1043
+ "single_word": false,
1044
+ "special": false
1045
+ },
1046
+ "32127": {
1047
+ "content": "<y25>",
1048
+ "lstrip": false,
1049
+ "normalized": true,
1050
+ "rstrip": false,
1051
+ "single_word": false,
1052
+ "special": false
1053
+ },
1054
+ "32128": {
1055
+ "content": "<y26>",
1056
+ "lstrip": false,
1057
+ "normalized": true,
1058
+ "rstrip": false,
1059
+ "single_word": false,
1060
+ "special": false
1061
+ },
1062
+ "32129": {
1063
+ "content": "<y27>",
1064
+ "lstrip": false,
1065
+ "normalized": true,
1066
+ "rstrip": false,
1067
+ "single_word": false,
1068
+ "special": false
1069
+ },
1070
+ "32130": {
1071
+ "content": "<y28>",
1072
+ "lstrip": false,
1073
+ "normalized": true,
1074
+ "rstrip": false,
1075
+ "single_word": false,
1076
+ "special": false
1077
+ },
1078
+ "32131": {
1079
+ "content": "<y29>",
1080
+ "lstrip": false,
1081
+ "normalized": true,
1082
+ "rstrip": false,
1083
+ "single_word": false,
1084
+ "special": false
1085
+ },
1086
+ "32132": {
1087
+ "content": "<y30>",
1088
+ "lstrip": false,
1089
+ "normalized": true,
1090
+ "rstrip": false,
1091
+ "single_word": false,
1092
+ "special": false
1093
+ },
1094
+ "32133": {
1095
+ "content": "<y31>",
1096
+ "lstrip": false,
1097
+ "normalized": true,
1098
+ "rstrip": false,
1099
+ "single_word": false,
1100
+ "special": false
1101
+ },
1102
+ "32134": {
1103
+ "content": "<y32>",
1104
+ "lstrip": false,
1105
+ "normalized": true,
1106
+ "rstrip": false,
1107
+ "single_word": false,
1108
+ "special": false
1109
+ },
1110
+ "32135": {
1111
+ "content": "<y33>",
1112
+ "lstrip": false,
1113
+ "normalized": true,
1114
+ "rstrip": false,
1115
+ "single_word": false,
1116
+ "special": false
1117
+ },
1118
+ "32136": {
1119
+ "content": "<y34>",
1120
+ "lstrip": false,
1121
+ "normalized": true,
1122
+ "rstrip": false,
1123
+ "single_word": false,
1124
+ "special": false
1125
+ },
1126
+ "32137": {
1127
+ "content": "<y35>",
1128
+ "lstrip": false,
1129
+ "normalized": true,
1130
+ "rstrip": false,
1131
+ "single_word": false,
1132
+ "special": false
1133
+ },
1134
+ "32138": {
1135
+ "content": "<y36>",
1136
+ "lstrip": false,
1137
+ "normalized": true,
1138
+ "rstrip": false,
1139
+ "single_word": false,
1140
+ "special": false
1141
+ },
1142
+ "32139": {
1143
+ "content": "<y37>",
1144
+ "lstrip": false,
1145
+ "normalized": true,
1146
+ "rstrip": false,
1147
+ "single_word": false,
1148
+ "special": false
1149
+ },
1150
+ "32140": {
1151
+ "content": "<y38>",
1152
+ "lstrip": false,
1153
+ "normalized": true,
1154
+ "rstrip": false,
1155
+ "single_word": false,
1156
+ "special": false
1157
+ },
1158
+ "32141": {
1159
+ "content": "<y39>",
1160
+ "lstrip": false,
1161
+ "normalized": true,
1162
+ "rstrip": false,
1163
+ "single_word": false,
1164
+ "special": false
1165
+ },
1166
+ "32142": {
1167
+ "content": "<y40>",
1168
+ "lstrip": false,
1169
+ "normalized": true,
1170
+ "rstrip": false,
1171
+ "single_word": false,
1172
+ "special": false
1173
+ },
1174
+ "32143": {
1175
+ "content": "<y41>",
1176
+ "lstrip": false,
1177
+ "normalized": true,
1178
+ "rstrip": false,
1179
+ "single_word": false,
1180
+ "special": false
1181
+ },
1182
+ "32144": {
1183
+ "content": "<y42>",
1184
+ "lstrip": false,
1185
+ "normalized": true,
1186
+ "rstrip": false,
1187
+ "single_word": false,
1188
+ "special": false
1189
+ },
1190
+ "32145": {
1191
+ "content": "<y43>",
1192
+ "lstrip": false,
1193
+ "normalized": true,
1194
+ "rstrip": false,
1195
+ "single_word": false,
1196
+ "special": false
1197
+ },
1198
+ "32146": {
1199
+ "content": "<y44>",
1200
+ "lstrip": false,
1201
+ "normalized": true,
1202
+ "rstrip": false,
1203
+ "single_word": false,
1204
+ "special": false
1205
+ },
1206
+ "32147": {
1207
+ "content": "<y45>",
1208
+ "lstrip": false,
1209
+ "normalized": true,
1210
+ "rstrip": false,
1211
+ "single_word": false,
1212
+ "special": false
1213
+ },
1214
+ "32148": {
1215
+ "content": "<y46>",
1216
+ "lstrip": false,
1217
+ "normalized": true,
1218
+ "rstrip": false,
1219
+ "single_word": false,
1220
+ "special": false
1221
+ },
1222
+ "32149": {
1223
+ "content": "<y47>",
1224
+ "lstrip": false,
1225
+ "normalized": true,
1226
+ "rstrip": false,
1227
+ "single_word": false,
1228
+ "special": false
1229
+ },
1230
+ "32150": {
1231
+ "content": "<y48>",
1232
+ "lstrip": false,
1233
+ "normalized": true,
1234
+ "rstrip": false,
1235
+ "single_word": false,
1236
+ "special": false
1237
+ },
1238
+ "32151": {
1239
+ "content": "<y49>",
1240
+ "lstrip": false,
1241
+ "normalized": true,
1242
+ "rstrip": false,
1243
+ "single_word": false,
1244
+ "special": false
1245
+ },
1246
+ "32152": {
1247
+ "content": "<y50>",
1248
+ "lstrip": false,
1249
+ "normalized": true,
1250
+ "rstrip": false,
1251
+ "single_word": false,
1252
+ "special": false
1253
+ },
1254
+ "32153": {
1255
+ "content": "<y51>",
1256
+ "lstrip": false,
1257
+ "normalized": true,
1258
+ "rstrip": false,
1259
+ "single_word": false,
1260
+ "special": false
1261
+ },
1262
+ "32154": {
1263
+ "content": "<y52>",
1264
+ "lstrip": false,
1265
+ "normalized": true,
1266
+ "rstrip": false,
1267
+ "single_word": false,
1268
+ "special": false
1269
+ },
1270
+ "32155": {
1271
+ "content": "<y53>",
1272
+ "lstrip": false,
1273
+ "normalized": true,
1274
+ "rstrip": false,
1275
+ "single_word": false,
1276
+ "special": false
1277
+ },
1278
+ "32156": {
1279
+ "content": "<y54>",
1280
+ "lstrip": false,
1281
+ "normalized": true,
1282
+ "rstrip": false,
1283
+ "single_word": false,
1284
+ "special": false
1285
+ },
1286
+ "32157": {
1287
+ "content": "<y55>",
1288
+ "lstrip": false,
1289
+ "normalized": true,
1290
+ "rstrip": false,
1291
+ "single_word": false,
1292
+ "special": false
1293
+ },
1294
+ "32158": {
1295
+ "content": "<y56>",
1296
+ "lstrip": false,
1297
+ "normalized": true,
1298
+ "rstrip": false,
1299
+ "single_word": false,
1300
+ "special": false
1301
+ },
1302
+ "32159": {
1303
+ "content": "<y57>",
1304
+ "lstrip": false,
1305
+ "normalized": true,
1306
+ "rstrip": false,
1307
+ "single_word": false,
1308
+ "special": false
1309
+ },
1310
+ "32160": {
1311
+ "content": "<y58>",
1312
+ "lstrip": false,
1313
+ "normalized": true,
1314
+ "rstrip": false,
1315
+ "single_word": false,
1316
+ "special": false
1317
+ },
1318
+ "32161": {
1319
+ "content": "<y59>",
1320
+ "lstrip": false,
1321
+ "normalized": true,
1322
+ "rstrip": false,
1323
+ "single_word": false,
1324
+ "special": false
1325
+ },
1326
+ "32162": {
1327
+ "content": "<y60>",
1328
+ "lstrip": false,
1329
+ "normalized": true,
1330
+ "rstrip": false,
1331
+ "single_word": false,
1332
+ "special": false
1333
+ },
1334
+ "32163": {
1335
+ "content": "<y61>",
1336
+ "lstrip": false,
1337
+ "normalized": true,
1338
+ "rstrip": false,
1339
+ "single_word": false,
1340
+ "special": false
1341
+ },
1342
+ "32164": {
1343
+ "content": "<y62>",
1344
+ "lstrip": false,
1345
+ "normalized": true,
1346
+ "rstrip": false,
1347
+ "single_word": false,
1348
+ "special": false
1349
+ },
1350
+ "32165": {
1351
+ "content": "<y63>",
1352
+ "lstrip": false,
1353
+ "normalized": true,
1354
+ "rstrip": false,
1355
+ "single_word": false,
1356
+ "special": false
1357
+ },
1358
+ "32166": {
1359
+ "content": "<y64>",
1360
+ "lstrip": false,
1361
+ "normalized": true,
1362
+ "rstrip": false,
1363
+ "single_word": false,
1364
+ "special": false
1365
+ },
1366
+ "32167": {
1367
+ "content": "<y65>",
1368
+ "lstrip": false,
1369
+ "normalized": true,
1370
+ "rstrip": false,
1371
+ "single_word": false,
1372
+ "special": false
1373
+ },
1374
+ "32168": {
1375
+ "content": "<y66>",
1376
+ "lstrip": false,
1377
+ "normalized": true,
1378
+ "rstrip": false,
1379
+ "single_word": false,
1380
+ "special": false
1381
+ },
1382
+ "32169": {
1383
+ "content": "<y67>",
1384
+ "lstrip": false,
1385
+ "normalized": true,
1386
+ "rstrip": false,
1387
+ "single_word": false,
1388
+ "special": false
1389
+ },
1390
+ "32170": {
1391
+ "content": "<y68>",
1392
+ "lstrip": false,
1393
+ "normalized": true,
1394
+ "rstrip": false,
1395
+ "single_word": false,
1396
+ "special": false
1397
+ },
1398
+ "32171": {
1399
+ "content": "<y69>",
1400
+ "lstrip": false,
1401
+ "normalized": true,
1402
+ "rstrip": false,
1403
+ "single_word": false,
1404
+ "special": false
1405
+ },
1406
+ "32172": {
1407
+ "content": "<y70>",
1408
+ "lstrip": false,
1409
+ "normalized": true,
1410
+ "rstrip": false,
1411
+ "single_word": false,
1412
+ "special": false
1413
+ },
1414
+ "32173": {
1415
+ "content": "<y71>",
1416
+ "lstrip": false,
1417
+ "normalized": true,
1418
+ "rstrip": false,
1419
+ "single_word": false,
1420
+ "special": false
1421
+ },
1422
+ "32174": {
1423
+ "content": "<y72>",
1424
+ "lstrip": false,
1425
+ "normalized": true,
1426
+ "rstrip": false,
1427
+ "single_word": false,
1428
+ "special": false
1429
+ },
1430
+ "32175": {
1431
+ "content": "<y73>",
1432
+ "lstrip": false,
1433
+ "normalized": true,
1434
+ "rstrip": false,
1435
+ "single_word": false,
1436
+ "special": false
1437
+ },
1438
+ "32176": {
1439
+ "content": "<y74>",
1440
+ "lstrip": false,
1441
+ "normalized": true,
1442
+ "rstrip": false,
1443
+ "single_word": false,
1444
+ "special": false
1445
+ },
1446
+ "32177": {
1447
+ "content": "<y75>",
1448
+ "lstrip": false,
1449
+ "normalized": true,
1450
+ "rstrip": false,
1451
+ "single_word": false,
1452
+ "special": false
1453
+ },
1454
+ "32178": {
1455
+ "content": "<y76>",
1456
+ "lstrip": false,
1457
+ "normalized": true,
1458
+ "rstrip": false,
1459
+ "single_word": false,
1460
+ "special": false
1461
+ },
1462
+ "32179": {
1463
+ "content": "<y77>",
1464
+ "lstrip": false,
1465
+ "normalized": true,
1466
+ "rstrip": false,
1467
+ "single_word": false,
1468
+ "special": false
1469
+ },
1470
+ "32180": {
1471
+ "content": "<y78>",
1472
+ "lstrip": false,
1473
+ "normalized": true,
1474
+ "rstrip": false,
1475
+ "single_word": false,
1476
+ "special": false
1477
+ },
1478
+ "32181": {
1479
+ "content": "<y79>",
1480
+ "lstrip": false,
1481
+ "normalized": true,
1482
+ "rstrip": false,
1483
+ "single_word": false,
1484
+ "special": false
1485
+ },
1486
+ "32182": {
1487
+ "content": "<y80>",
1488
+ "lstrip": false,
1489
+ "normalized": true,
1490
+ "rstrip": false,
1491
+ "single_word": false,
1492
+ "special": false
1493
+ },
1494
+ "32183": {
1495
+ "content": "<y81>",
1496
+ "lstrip": false,
1497
+ "normalized": true,
1498
+ "rstrip": false,
1499
+ "single_word": false,
1500
+ "special": false
1501
+ },
1502
+ "32184": {
1503
+ "content": "<y82>",
1504
+ "lstrip": false,
1505
+ "normalized": true,
1506
+ "rstrip": false,
1507
+ "single_word": false,
1508
+ "special": false
1509
+ },
1510
+ "32185": {
1511
+ "content": "<y83>",
1512
+ "lstrip": false,
1513
+ "normalized": true,
1514
+ "rstrip": false,
1515
+ "single_word": false,
1516
+ "special": false
1517
+ },
1518
+ "32186": {
1519
+ "content": "<y84>",
1520
+ "lstrip": false,
1521
+ "normalized": true,
1522
+ "rstrip": false,
1523
+ "single_word": false,
1524
+ "special": false
1525
+ },
1526
+ "32187": {
1527
+ "content": "<y85>",
1528
+ "lstrip": false,
1529
+ "normalized": true,
1530
+ "rstrip": false,
1531
+ "single_word": false,
1532
+ "special": false
1533
+ },
1534
+ "32188": {
1535
+ "content": "<y86>",
1536
+ "lstrip": false,
1537
+ "normalized": true,
1538
+ "rstrip": false,
1539
+ "single_word": false,
1540
+ "special": false
1541
+ },
1542
+ "32189": {
1543
+ "content": "<y87>",
1544
+ "lstrip": false,
1545
+ "normalized": true,
1546
+ "rstrip": false,
1547
+ "single_word": false,
1548
+ "special": false
1549
+ },
1550
+ "32190": {
1551
+ "content": "<y88>",
1552
+ "lstrip": false,
1553
+ "normalized": true,
1554
+ "rstrip": false,
1555
+ "single_word": false,
1556
+ "special": false
1557
+ },
1558
+ "32191": {
1559
+ "content": "<y89>",
1560
+ "lstrip": false,
1561
+ "normalized": true,
1562
+ "rstrip": false,
1563
+ "single_word": false,
1564
+ "special": false
1565
+ },
1566
+ "32192": {
1567
+ "content": "<y90>",
1568
+ "lstrip": false,
1569
+ "normalized": true,
1570
+ "rstrip": false,
1571
+ "single_word": false,
1572
+ "special": false
1573
+ },
1574
+ "32193": {
1575
+ "content": "<y91>",
1576
+ "lstrip": false,
1577
+ "normalized": true,
1578
+ "rstrip": false,
1579
+ "single_word": false,
1580
+ "special": false
1581
+ },
1582
+ "32194": {
1583
+ "content": "<y92>",
1584
+ "lstrip": false,
1585
+ "normalized": true,
1586
+ "rstrip": false,
1587
+ "single_word": false,
1588
+ "special": false
1589
+ },
1590
+ "32195": {
1591
+ "content": "<y93>",
1592
+ "lstrip": false,
1593
+ "normalized": true,
1594
+ "rstrip": false,
1595
+ "single_word": false,
1596
+ "special": false
1597
+ },
1598
+ "32196": {
1599
+ "content": "<y94>",
1600
+ "lstrip": false,
1601
+ "normalized": true,
1602
+ "rstrip": false,
1603
+ "single_word": false,
1604
+ "special": false
1605
+ },
1606
+ "32197": {
1607
+ "content": "<y95>",
1608
+ "lstrip": false,
1609
+ "normalized": true,
1610
+ "rstrip": false,
1611
+ "single_word": false,
1612
+ "special": false
1613
+ },
1614
+ "32198": {
1615
+ "content": "<y96>",
1616
+ "lstrip": false,
1617
+ "normalized": true,
1618
+ "rstrip": false,
1619
+ "single_word": false,
1620
+ "special": false
1621
+ },
1622
+ "32199": {
1623
+ "content": "<y97>",
1624
+ "lstrip": false,
1625
+ "normalized": true,
1626
+ "rstrip": false,
1627
+ "single_word": false,
1628
+ "special": false
1629
+ },
1630
+ "32200": {
1631
+ "content": "<y98>",
1632
+ "lstrip": false,
1633
+ "normalized": true,
1634
+ "rstrip": false,
1635
+ "single_word": false,
1636
+ "special": false
1637
+ },
1638
+ "32201": {
1639
+ "content": "<y99>",
1640
+ "lstrip": false,
1641
+ "normalized": true,
1642
+ "rstrip": false,
1643
+ "single_word": false,
1644
+ "special": false
1645
+ },
1646
+ "32202": {
1647
+ "content": "<box>",
1648
+ "lstrip": false,
1649
+ "normalized": true,
1650
+ "rstrip": false,
1651
+ "single_word": false,
1652
+ "special": false
1653
+ },
1654
+ "32203": {
1655
+ "content": "</box>",
1656
+ "lstrip": false,
1657
+ "normalized": true,
1658
+ "rstrip": false,
1659
+ "single_word": false,
1660
+ "special": false
1661
+ },
1662
+ "32204": {
1663
+ "content": "<image>",
1664
+ "lstrip": false,
1665
+ "normalized": true,
1666
+ "rstrip": false,
1667
+ "single_word": false,
1668
+ "special": false
1669
+ },
1670
+ "32205": {
1671
+ "content": "<prev_im>",
1672
+ "lstrip": false,
1673
+ "normalized": true,
1674
+ "rstrip": false,
1675
+ "single_word": false,
1676
+ "special": false
1677
+ },
1678
+ "32206": {
1679
+ "content": "<lat_image>",
1680
+ "lstrip": false,
1681
+ "normalized": true,
1682
+ "rstrip": false,
1683
+ "single_word": false,
1684
+ "special": false
1685
+ }
1686
+ },
1687
+ "bos_token": "<s>",
1688
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}You are an expert radiology assistant tasked with interpreting a chest X-ray study. {% for message in messages %}{% if message[\"role\"] == \"user\" %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message[\"content\"] %}{% if item[\"type\"] == \"text\" %}{{ item[\"text\"] }}{% elif item[\"type\"] == \"image\" %}<image>{% endif %}{% endfor %}{% if message[\"role\"] == \"user\" %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}",
1689
+ "clean_up_tokenization_spaces": false,
1690
+ "eos_token": "</s>",
1691
+ "extra_special_tokens": {},
1692
+ "legacy": false,
1693
+ "model_max_length": 4096,
1694
+ "pad_token": "<unk>",
1695
+ "padding_side": "left",
1696
+ "sp_model_kwargs": {},
1697
+ "spaces_between_special_tokens": false,
1698
+ "tokenizer_class": "LlamaTokenizer",
1699
+ "unk_token": "<unk>",
1700
+ "use_default_system_prompt": false
1701
+ }