Upload 14 files
Browse files- added_tokens.json +209 -0
- chat_template.json +3 -0
- config.json +78 -0
- configuration_maira2.py +32 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- modeling_maira2.py +359 -0
- preprocessor_config.json +31 -0
- processing_maira2.py +729 -0
- processor_config.json +14 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +1701 -0
added_tokens.json
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</box>": 32203,
|
3 |
+
"</obj>": 32001,
|
4 |
+
"<box>": 32202,
|
5 |
+
"<image>": 32204,
|
6 |
+
"<lat_image>": 32206,
|
7 |
+
"<obj>": 32000,
|
8 |
+
"<prev_im>": 32205,
|
9 |
+
"<x0>": 32002,
|
10 |
+
"<x10>": 32012,
|
11 |
+
"<x11>": 32013,
|
12 |
+
"<x12>": 32014,
|
13 |
+
"<x13>": 32015,
|
14 |
+
"<x14>": 32016,
|
15 |
+
"<x15>": 32017,
|
16 |
+
"<x16>": 32018,
|
17 |
+
"<x17>": 32019,
|
18 |
+
"<x18>": 32020,
|
19 |
+
"<x19>": 32021,
|
20 |
+
"<x1>": 32003,
|
21 |
+
"<x20>": 32022,
|
22 |
+
"<x21>": 32023,
|
23 |
+
"<x22>": 32024,
|
24 |
+
"<x23>": 32025,
|
25 |
+
"<x24>": 32026,
|
26 |
+
"<x25>": 32027,
|
27 |
+
"<x26>": 32028,
|
28 |
+
"<x27>": 32029,
|
29 |
+
"<x28>": 32030,
|
30 |
+
"<x29>": 32031,
|
31 |
+
"<x2>": 32004,
|
32 |
+
"<x30>": 32032,
|
33 |
+
"<x31>": 32033,
|
34 |
+
"<x32>": 32034,
|
35 |
+
"<x33>": 32035,
|
36 |
+
"<x34>": 32036,
|
37 |
+
"<x35>": 32037,
|
38 |
+
"<x36>": 32038,
|
39 |
+
"<x37>": 32039,
|
40 |
+
"<x38>": 32040,
|
41 |
+
"<x39>": 32041,
|
42 |
+
"<x3>": 32005,
|
43 |
+
"<x40>": 32042,
|
44 |
+
"<x41>": 32043,
|
45 |
+
"<x42>": 32044,
|
46 |
+
"<x43>": 32045,
|
47 |
+
"<x44>": 32046,
|
48 |
+
"<x45>": 32047,
|
49 |
+
"<x46>": 32048,
|
50 |
+
"<x47>": 32049,
|
51 |
+
"<x48>": 32050,
|
52 |
+
"<x49>": 32051,
|
53 |
+
"<x4>": 32006,
|
54 |
+
"<x50>": 32052,
|
55 |
+
"<x51>": 32053,
|
56 |
+
"<x52>": 32054,
|
57 |
+
"<x53>": 32055,
|
58 |
+
"<x54>": 32056,
|
59 |
+
"<x55>": 32057,
|
60 |
+
"<x56>": 32058,
|
61 |
+
"<x57>": 32059,
|
62 |
+
"<x58>": 32060,
|
63 |
+
"<x59>": 32061,
|
64 |
+
"<x5>": 32007,
|
65 |
+
"<x60>": 32062,
|
66 |
+
"<x61>": 32063,
|
67 |
+
"<x62>": 32064,
|
68 |
+
"<x63>": 32065,
|
69 |
+
"<x64>": 32066,
|
70 |
+
"<x65>": 32067,
|
71 |
+
"<x66>": 32068,
|
72 |
+
"<x67>": 32069,
|
73 |
+
"<x68>": 32070,
|
74 |
+
"<x69>": 32071,
|
75 |
+
"<x6>": 32008,
|
76 |
+
"<x70>": 32072,
|
77 |
+
"<x71>": 32073,
|
78 |
+
"<x72>": 32074,
|
79 |
+
"<x73>": 32075,
|
80 |
+
"<x74>": 32076,
|
81 |
+
"<x75>": 32077,
|
82 |
+
"<x76>": 32078,
|
83 |
+
"<x77>": 32079,
|
84 |
+
"<x78>": 32080,
|
85 |
+
"<x79>": 32081,
|
86 |
+
"<x7>": 32009,
|
87 |
+
"<x80>": 32082,
|
88 |
+
"<x81>": 32083,
|
89 |
+
"<x82>": 32084,
|
90 |
+
"<x83>": 32085,
|
91 |
+
"<x84>": 32086,
|
92 |
+
"<x85>": 32087,
|
93 |
+
"<x86>": 32088,
|
94 |
+
"<x87>": 32089,
|
95 |
+
"<x88>": 32090,
|
96 |
+
"<x89>": 32091,
|
97 |
+
"<x8>": 32010,
|
98 |
+
"<x90>": 32092,
|
99 |
+
"<x91>": 32093,
|
100 |
+
"<x92>": 32094,
|
101 |
+
"<x93>": 32095,
|
102 |
+
"<x94>": 32096,
|
103 |
+
"<x95>": 32097,
|
104 |
+
"<x96>": 32098,
|
105 |
+
"<x97>": 32099,
|
106 |
+
"<x98>": 32100,
|
107 |
+
"<x99>": 32101,
|
108 |
+
"<x9>": 32011,
|
109 |
+
"<y0>": 32102,
|
110 |
+
"<y10>": 32112,
|
111 |
+
"<y11>": 32113,
|
112 |
+
"<y12>": 32114,
|
113 |
+
"<y13>": 32115,
|
114 |
+
"<y14>": 32116,
|
115 |
+
"<y15>": 32117,
|
116 |
+
"<y16>": 32118,
|
117 |
+
"<y17>": 32119,
|
118 |
+
"<y18>": 32120,
|
119 |
+
"<y19>": 32121,
|
120 |
+
"<y1>": 32103,
|
121 |
+
"<y20>": 32122,
|
122 |
+
"<y21>": 32123,
|
123 |
+
"<y22>": 32124,
|
124 |
+
"<y23>": 32125,
|
125 |
+
"<y24>": 32126,
|
126 |
+
"<y25>": 32127,
|
127 |
+
"<y26>": 32128,
|
128 |
+
"<y27>": 32129,
|
129 |
+
"<y28>": 32130,
|
130 |
+
"<y29>": 32131,
|
131 |
+
"<y2>": 32104,
|
132 |
+
"<y30>": 32132,
|
133 |
+
"<y31>": 32133,
|
134 |
+
"<y32>": 32134,
|
135 |
+
"<y33>": 32135,
|
136 |
+
"<y34>": 32136,
|
137 |
+
"<y35>": 32137,
|
138 |
+
"<y36>": 32138,
|
139 |
+
"<y37>": 32139,
|
140 |
+
"<y38>": 32140,
|
141 |
+
"<y39>": 32141,
|
142 |
+
"<y3>": 32105,
|
143 |
+
"<y40>": 32142,
|
144 |
+
"<y41>": 32143,
|
145 |
+
"<y42>": 32144,
|
146 |
+
"<y43>": 32145,
|
147 |
+
"<y44>": 32146,
|
148 |
+
"<y45>": 32147,
|
149 |
+
"<y46>": 32148,
|
150 |
+
"<y47>": 32149,
|
151 |
+
"<y48>": 32150,
|
152 |
+
"<y49>": 32151,
|
153 |
+
"<y4>": 32106,
|
154 |
+
"<y50>": 32152,
|
155 |
+
"<y51>": 32153,
|
156 |
+
"<y52>": 32154,
|
157 |
+
"<y53>": 32155,
|
158 |
+
"<y54>": 32156,
|
159 |
+
"<y55>": 32157,
|
160 |
+
"<y56>": 32158,
|
161 |
+
"<y57>": 32159,
|
162 |
+
"<y58>": 32160,
|
163 |
+
"<y59>": 32161,
|
164 |
+
"<y5>": 32107,
|
165 |
+
"<y60>": 32162,
|
166 |
+
"<y61>": 32163,
|
167 |
+
"<y62>": 32164,
|
168 |
+
"<y63>": 32165,
|
169 |
+
"<y64>": 32166,
|
170 |
+
"<y65>": 32167,
|
171 |
+
"<y66>": 32168,
|
172 |
+
"<y67>": 32169,
|
173 |
+
"<y68>": 32170,
|
174 |
+
"<y69>": 32171,
|
175 |
+
"<y6>": 32108,
|
176 |
+
"<y70>": 32172,
|
177 |
+
"<y71>": 32173,
|
178 |
+
"<y72>": 32174,
|
179 |
+
"<y73>": 32175,
|
180 |
+
"<y74>": 32176,
|
181 |
+
"<y75>": 32177,
|
182 |
+
"<y76>": 32178,
|
183 |
+
"<y77>": 32179,
|
184 |
+
"<y78>": 32180,
|
185 |
+
"<y79>": 32181,
|
186 |
+
"<y7>": 32109,
|
187 |
+
"<y80>": 32182,
|
188 |
+
"<y81>": 32183,
|
189 |
+
"<y82>": 32184,
|
190 |
+
"<y83>": 32185,
|
191 |
+
"<y84>": 32186,
|
192 |
+
"<y85>": 32187,
|
193 |
+
"<y86>": 32188,
|
194 |
+
"<y87>": 32189,
|
195 |
+
"<y88>": 32190,
|
196 |
+
"<y89>": 32191,
|
197 |
+
"<y8>": 32110,
|
198 |
+
"<y90>": 32192,
|
199 |
+
"<y91>": 32193,
|
200 |
+
"<y92>": 32194,
|
201 |
+
"<y93>": 32195,
|
202 |
+
"<y94>": 32196,
|
203 |
+
"<y95>": 32197,
|
204 |
+
"<y96>": 32198,
|
205 |
+
"<y97>": 32199,
|
206 |
+
"<y98>": 32200,
|
207 |
+
"<y99>": 32201,
|
208 |
+
"<y9>": 32111
|
209 |
+
}
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}You are an expert radiology assistant tasked with interpreting a chest X-ray study. {% for message in messages %}{% if message[\"role\"] == \"user\" %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message[\"content\"] %}{% if item[\"type\"] == \"text\" %}{{ item[\"text\"] }}{% elif item[\"type\"] == \"image\" %}<image>{% endif %}{% endfor %}{% if message[\"role\"] == \"user\" %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}"
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/ea/work/my_optimum_intel/optimum-intel/maira2",
|
3 |
+
"architectures": [
|
4 |
+
"Maira2ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_maira2.Maira2Config",
|
8 |
+
"AutoModelForCausalLM": "modeling_maira2.Maira2ForConditionalGeneration",
|
9 |
+
"AutoModelForVision2Seq": "modeling_maira2.Maira2ForConditionalGeneration"
|
10 |
+
},
|
11 |
+
"hidden_size": 16,
|
12 |
+
"ignore_index": -100,
|
13 |
+
"image_seq_length": 4,
|
14 |
+
"image_token_index": 32204,
|
15 |
+
"model_type": "maira2",
|
16 |
+
"multimodal_projector_bias": true,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"projector_hidden_act": "gelu",
|
19 |
+
"projector_n_layers": 4,
|
20 |
+
"text_config": {
|
21 |
+
"_name_or_path": "HuggingFaceM4/tiny-random-LlamaForCausalLM",
|
22 |
+
"architectures": [
|
23 |
+
"LlamaForCausalLM"
|
24 |
+
],
|
25 |
+
"bos_token_id": 0,
|
26 |
+
"eos_token_id": 1,
|
27 |
+
"head_dim": 4,
|
28 |
+
"hidden_size": 16,
|
29 |
+
"intermediate_size": 64,
|
30 |
+
"model_type": "llama",
|
31 |
+
"num_attention_heads": 4,
|
32 |
+
"num_hidden_layers": 2,
|
33 |
+
"num_key_value_heads": 4,
|
34 |
+
"pad_token_id": 2,
|
35 |
+
"torch_dtype": "bfloat16",
|
36 |
+
"vocab_size": 32207
|
37 |
+
},
|
38 |
+
"torch_dtype": "float32",
|
39 |
+
"transformers_version": "4.48.3",
|
40 |
+
"vision_config": {
|
41 |
+
"apply_layernorm": true,
|
42 |
+
"architectures": [
|
43 |
+
"Dinov2Model"
|
44 |
+
],
|
45 |
+
"attention_probs_dropout_prob": 0.0,
|
46 |
+
"drop_path_rate": 0.0,
|
47 |
+
"hidden_act": "gelu",
|
48 |
+
"hidden_dropout_prob": 0.0,
|
49 |
+
"hidden_size": 16,
|
50 |
+
"image_size": 30,
|
51 |
+
"layer_norm_eps": 1e-06,
|
52 |
+
"layerscale_value": 1.0,
|
53 |
+
"mlp_ratio": 4,
|
54 |
+
"model_type": "dinov2",
|
55 |
+
"num_attention_heads": 4,
|
56 |
+
"num_hidden_layers": 4,
|
57 |
+
"out_features": [
|
58 |
+
"stage4"
|
59 |
+
],
|
60 |
+
"out_indices": [
|
61 |
+
4
|
62 |
+
],
|
63 |
+
"patch_size": 2,
|
64 |
+
"qkv_bias": true,
|
65 |
+
"reshape_hidden_states": false,
|
66 |
+
"stage_names": [
|
67 |
+
"stem",
|
68 |
+
"stage1",
|
69 |
+
"stage2",
|
70 |
+
"stage3",
|
71 |
+
"stage4"
|
72 |
+
],
|
73 |
+
"torch_dtype": "float32",
|
74 |
+
"use_swiglu_ffn": false
|
75 |
+
},
|
76 |
+
"vision_feature_layer": -1,
|
77 |
+
"vision_feature_select_strategy": "default"
|
78 |
+
}
|
configuration_maira2.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Microsoft. All rights reserved.
|
2 |
+
# Licensed under the MSRLA License. See LICENSE in the repo root for license information.
|
3 |
+
|
4 |
+
|
5 |
+
from typing import Any
|
6 |
+
|
7 |
+
from transformers import LlavaConfig
|
8 |
+
|
9 |
+
|
10 |
+
class Maira2Config(LlavaConfig):
|
11 |
+
"""
|
12 |
+
This is the configuration class to store the configuration of a `Maira2ForConditionalGeneration` model. It is
|
13 |
+
used to instantiate a MAIRA-2 model according to the specified arguments, defining the model architecture.
|
14 |
+
|
15 |
+
It inherits from `LlavaConfig`. In addition to the inherited attributes, it adds the
|
16 |
+
ability to customize the multimodal projector through following attributes:
|
17 |
+
|
18 |
+
Args:
|
19 |
+
projector_n_layers (`int`, *optional*, defaults to 4):
|
20 |
+
Number of layers in the multimodal projector.
|
21 |
+
"""
|
22 |
+
|
23 |
+
model_type = "maira2"
|
24 |
+
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
projector_n_layers: int = 4,
|
28 |
+
**kwargs: Any,
|
29 |
+
) -> None:
|
30 |
+
super().__init__(**kwargs)
|
31 |
+
self.hidden_size = self.text_config.hidden_size
|
32 |
+
self.projector_n_layers = projector_n_layers
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.48.3"
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3bfb1d6f0ec0f0949cd84df187a2bfb571242c4ca9bdd519c4af512716ae23a
|
3 |
+
size 4240896
|
modeling_maira2.py
ADDED
@@ -0,0 +1,359 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Microsoft. All rights reserved.
|
2 |
+
# Licensed under the MSRLA License. See LICENSE in the repo root for license information.
|
3 |
+
|
4 |
+
from typing import Optional, List, Tuple, Union
|
5 |
+
import torch
|
6 |
+
from torch.nn import Linear, Module, Sequential
|
7 |
+
from transformers import AutoBackbone, AutoModelForCausalLM, LlavaForConditionalGeneration, LlavaPreTrainedModel
|
8 |
+
from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast
|
9 |
+
from transformers.activations import ACT2FN
|
10 |
+
from transformers.utils import check_min_version
|
11 |
+
|
12 |
+
from .configuration_maira2 import Maira2Config
|
13 |
+
|
14 |
+
|
15 |
+
class Maira2MultiModalProjector(Module):
|
16 |
+
"""
|
17 |
+
This class implements the multimodal projector for MAIRA-2 model. It projects the image features to the text
|
18 |
+
hidden size via a series of linear layers (4 layers in MAIRA-2).
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, config: Maira2Config):
|
22 |
+
super().__init__()
|
23 |
+
|
24 |
+
n_layers = config.projector_n_layers
|
25 |
+
if n_layers < 1:
|
26 |
+
raise ValueError(f"Number of layers should be at least 1, got {n_layers=}")
|
27 |
+
text_hidden_size = config.text_config.hidden_size
|
28 |
+
vision_hidden_size = config.vision_config.hidden_size
|
29 |
+
_layers = [Linear(vision_hidden_size, text_hidden_size, bias=True)]
|
30 |
+
for _ in range(n_layers - 1):
|
31 |
+
_layers.append(ACT2FN[config.projector_hidden_act])
|
32 |
+
_layers.append(Linear(text_hidden_size, text_hidden_size, bias=True))
|
33 |
+
|
34 |
+
self.layers = Sequential(*_layers)
|
35 |
+
|
36 |
+
def forward(self, image_features: torch.Tensor) -> torch.FloatTensor:
|
37 |
+
hidden_states = self.layers(image_features)
|
38 |
+
return hidden_states # type: ignore[no-any-return]
|
39 |
+
|
40 |
+
|
41 |
+
class Maira2ForConditionalGeneration(LlavaForConditionalGeneration):
|
42 |
+
"""
|
43 |
+
This model implements the multimodal model MAIRA-2. It consists of a vision backbone, a multimodal projector, and a
|
44 |
+
language model. The model can be used for grounded and ungrounded report generation tasks as well as phrase grounding.
|
45 |
+
This class inherits from `LlavaForConditionalGeneration`, defining a custom multimodal projector and changing image
|
46 |
+
feature selection.
|
47 |
+
"""
|
48 |
+
|
49 |
+
config_class = Maira2Config
|
50 |
+
|
51 |
+
def __init__(self, config: Maira2Config) -> None:
|
52 |
+
|
53 |
+
# Check transformers version is at least 4.46.0.dev0 otherwise the model fails
|
54 |
+
# silently since get_image_features is not called in the forward pass
|
55 |
+
check_min_version("4.46.0.dev0")
|
56 |
+
|
57 |
+
super(LlavaPreTrainedModel, self).__init__(config)
|
58 |
+
self.vision_tower = AutoBackbone.from_config(config.vision_config)
|
59 |
+
|
60 |
+
self.multi_modal_projector = Maira2MultiModalProjector(config)
|
61 |
+
self.vocab_size = config.text_config.vocab_size
|
62 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
63 |
+
config.text_config,
|
64 |
+
attn_implementation=config._attn_implementation,
|
65 |
+
)
|
66 |
+
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
67 |
+
self.post_init()
|
68 |
+
|
69 |
+
def get_image_features(
|
70 |
+
self, pixel_values: torch.FloatTensor, vision_feature_layer: int, vision_feature_select_strategy: str
|
71 |
+
) -> torch.Tensor:
|
72 |
+
"""
|
73 |
+
This method extracts the image features from the vision backbone using the specified feature layer and
|
74 |
+
selection strategy. This is custom to MAIRA-2 model since we want to use the `feature_maps` from the Dinov2Backbone
|
75 |
+
class instead of the `hidden_states` which are used in the default implementation of `get_image_features` in LlavaForConditionalGeneration.
|
76 |
+
The feature_maps returned by Dinov2Backbone are the hideen_states with a layernorm applied to them.
|
77 |
+
"""
|
78 |
+
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
79 |
+
selected_image_feature = image_outputs.feature_maps[vision_feature_layer]
|
80 |
+
|
81 |
+
if vision_feature_select_strategy == "default":
|
82 |
+
selected_image_feature = selected_image_feature[:, 1:]
|
83 |
+
elif vision_feature_select_strategy == "full":
|
84 |
+
selected_image_feature = selected_image_feature
|
85 |
+
else:
|
86 |
+
raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
|
87 |
+
|
88 |
+
image_features = self.multi_modal_projector(selected_image_feature)
|
89 |
+
return image_features # type: ignore[no-any-return]
|
90 |
+
|
91 |
+
# modification from original, added forward from transformers 4.46 to prevent new preprocessing
|
92 |
+
def forward(
|
93 |
+
self,
|
94 |
+
input_ids: torch.LongTensor = None,
|
95 |
+
pixel_values: torch.FloatTensor = None,
|
96 |
+
attention_mask: Optional[torch.Tensor] = None,
|
97 |
+
position_ids: Optional[torch.LongTensor] = None,
|
98 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
99 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
100 |
+
vision_feature_layer: Optional[int] = None,
|
101 |
+
vision_feature_select_strategy: Optional[str] = None,
|
102 |
+
labels: Optional[torch.LongTensor] = None,
|
103 |
+
use_cache: Optional[bool] = None,
|
104 |
+
output_attentions: Optional[bool] = None,
|
105 |
+
output_hidden_states: Optional[bool] = None,
|
106 |
+
return_dict: Optional[bool] = None,
|
107 |
+
cache_position: Optional[torch.LongTensor] = None,
|
108 |
+
num_logits_to_keep: int = 0,
|
109 |
+
) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
|
110 |
+
r"""
|
111 |
+
Args:
|
112 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
113 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
114 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
115 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
116 |
+
|
117 |
+
num_logits_to_keep (`int`, *optional*):
|
118 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
119 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
120 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
121 |
+
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
|
125 |
+
Example:
|
126 |
+
|
127 |
+
```python
|
128 |
+
>>> from PIL import Image
|
129 |
+
>>> import requests
|
130 |
+
>>> from transformers import AutoProcessor, LlavaForConditionalGeneration
|
131 |
+
|
132 |
+
>>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
133 |
+
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
134 |
+
|
135 |
+
>>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
|
136 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
137 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
138 |
+
|
139 |
+
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
|
140 |
+
|
141 |
+
>>> # Generate
|
142 |
+
>>> generate_ids = model.generate(**inputs, max_new_tokens=15)
|
143 |
+
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
144 |
+
"USER: \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
|
145 |
+
```"""
|
146 |
+
|
147 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
148 |
+
output_hidden_states = (
|
149 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
150 |
+
)
|
151 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
152 |
+
vision_feature_layer = (
|
153 |
+
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
|
154 |
+
)
|
155 |
+
vision_feature_select_strategy = (
|
156 |
+
vision_feature_select_strategy
|
157 |
+
if vision_feature_select_strategy is not None
|
158 |
+
else self.config.vision_feature_select_strategy
|
159 |
+
)
|
160 |
+
|
161 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
162 |
+
raise ValueError(
|
163 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
164 |
+
)
|
165 |
+
|
166 |
+
if pixel_values is not None and inputs_embeds is not None:
|
167 |
+
raise ValueError(
|
168 |
+
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
|
169 |
+
)
|
170 |
+
|
171 |
+
legacy_processing = False
|
172 |
+
if inputs_embeds is None:
|
173 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
174 |
+
|
175 |
+
# if the number of image tokens is more than image embeddings seq length, then prob we expanded it in processing
|
176 |
+
# not very reliable, but we don't expect one to actually pass 500+ images for one prompt
|
177 |
+
# In case we're in decoding stage, legacy behavior is checked by presence of pixel values even if use_cache=True
|
178 |
+
legacy_processing = (
|
179 |
+
(input_ids == self.config.image_token_index).sum(1).max() < self.config.image_seq_length
|
180 |
+
) or (input_ids.shape[-1] == 1 and pixel_values is not None)
|
181 |
+
|
182 |
+
if pixel_values is not None:
|
183 |
+
image_features = self.get_image_features(
|
184 |
+
pixel_values=pixel_values,
|
185 |
+
vision_feature_layer=vision_feature_layer,
|
186 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
187 |
+
)
|
188 |
+
print(image_features.shape)
|
189 |
+
|
190 |
+
if legacy_processing:
|
191 |
+
# prefill stage vs decoding stage (legacy behavior copied)
|
192 |
+
if input_ids.shape[1] != 1:
|
193 |
+
inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
|
194 |
+
image_features, inputs_embeds, input_ids, attention_mask, labels
|
195 |
+
)
|
196 |
+
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)
|
197 |
+
else:
|
198 |
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
199 |
+
# that are set to 0
|
200 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
201 |
+
|
202 |
+
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
203 |
+
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
204 |
+
|
205 |
+
# Get the target length
|
206 |
+
target_length = input_ids.shape[1]
|
207 |
+
past_length = first_layer_past_key_value.shape[-1]
|
208 |
+
|
209 |
+
extended_attention_mask = torch.ones(
|
210 |
+
(attention_mask.shape[0], past_length),
|
211 |
+
dtype=attention_mask.dtype,
|
212 |
+
device=attention_mask.device,
|
213 |
+
)
|
214 |
+
|
215 |
+
# Filter out only the tokens that can be un-attended, this can happen
|
216 |
+
# if one uses Llava + Fused modules where the cache on the
|
217 |
+
# first iteration is already big enough, or if one passes custom cache
|
218 |
+
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
219 |
+
new_batch_index = batch_index[valid_indices]
|
220 |
+
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
221 |
+
|
222 |
+
# Zero-out the places where we don't need to attend
|
223 |
+
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
224 |
+
|
225 |
+
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
|
226 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
227 |
+
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)[
|
228 |
+
-target_length:
|
229 |
+
]
|
230 |
+
|
231 |
+
# TODO: @raushan retain only the new behavior after v4.47
|
232 |
+
else:
|
233 |
+
special_image_mask = (
|
234 |
+
(input_ids == self.config.image_token_index).unsqueeze(-1).expand_as(inputs_embeds)
|
235 |
+
)
|
236 |
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
237 |
+
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
|
238 |
+
|
239 |
+
outputs = self.language_model(
|
240 |
+
attention_mask=attention_mask,
|
241 |
+
position_ids=position_ids,
|
242 |
+
past_key_values=past_key_values,
|
243 |
+
inputs_embeds=inputs_embeds,
|
244 |
+
use_cache=use_cache,
|
245 |
+
output_attentions=output_attentions,
|
246 |
+
output_hidden_states=output_hidden_states,
|
247 |
+
return_dict=return_dict,
|
248 |
+
cache_position=cache_position,
|
249 |
+
num_logits_to_keep=num_logits_to_keep,
|
250 |
+
)
|
251 |
+
|
252 |
+
logits = outputs[0]
|
253 |
+
|
254 |
+
loss = None
|
255 |
+
if labels is not None:
|
256 |
+
# Shift so that tokens < n predict n
|
257 |
+
if attention_mask is not None:
|
258 |
+
shift_attention_mask = attention_mask[..., 1:]
|
259 |
+
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
|
260 |
+
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
|
261 |
+
else:
|
262 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
263 |
+
shift_labels = labels[..., 1:].contiguous()
|
264 |
+
# Flatten the tokens
|
265 |
+
loss_fct = torch.nn.CrossEntropyLoss()
|
266 |
+
loss = loss_fct(
|
267 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
|
268 |
+
)
|
269 |
+
|
270 |
+
if not return_dict:
|
271 |
+
output = (logits,) + outputs[1:]
|
272 |
+
return (loss,) + output if loss is not None else output
|
273 |
+
|
274 |
+
return LlavaCausalLMOutputWithPast(
|
275 |
+
loss=loss,
|
276 |
+
logits=logits,
|
277 |
+
past_key_values=outputs.past_key_values,
|
278 |
+
hidden_states=outputs.hidden_states,
|
279 |
+
attentions=outputs.attentions,
|
280 |
+
image_hidden_states=image_features if pixel_values is not None else None,
|
281 |
+
)
|
282 |
+
|
283 |
+
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels):
|
284 |
+
num_images, num_image_patches, embed_dim = image_features.shape
|
285 |
+
batch_size, sequence_length = input_ids.shape
|
286 |
+
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
|
287 |
+
# 1. Create a mask to know where special image tokens are
|
288 |
+
special_image_token_mask = input_ids == self.config.image_token_index
|
289 |
+
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
|
290 |
+
# Compute the maximum embed dimension
|
291 |
+
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
|
292 |
+
batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)
|
293 |
+
|
294 |
+
# 2. Compute the positions where text should be written
|
295 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
296 |
+
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
|
297 |
+
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
|
298 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
299 |
+
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
|
300 |
+
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
301 |
+
if left_padding:
|
302 |
+
new_token_positions += nb_image_pad[:, None] # offset for left padding
|
303 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
304 |
+
|
305 |
+
# 3. Create the full embedding, already padded to the maximum position
|
306 |
+
final_embedding = torch.zeros(
|
307 |
+
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
308 |
+
)
|
309 |
+
final_attention_mask = torch.zeros(
|
310 |
+
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
311 |
+
)
|
312 |
+
if labels is not None:
|
313 |
+
final_labels = torch.full(
|
314 |
+
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
|
315 |
+
)
|
316 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
317 |
+
# set the corresponding tensors into their correct target device.
|
318 |
+
target_device = inputs_embeds.device
|
319 |
+
batch_indices, non_image_indices, text_to_overwrite = (
|
320 |
+
batch_indices.to(target_device),
|
321 |
+
non_image_indices.to(target_device),
|
322 |
+
text_to_overwrite.to(target_device),
|
323 |
+
)
|
324 |
+
attention_mask = attention_mask.to(target_device)
|
325 |
+
|
326 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
327 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
328 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
|
329 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
|
330 |
+
if labels is not None:
|
331 |
+
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
|
332 |
+
|
333 |
+
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
|
334 |
+
image_to_overwrite = torch.full(
|
335 |
+
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
|
336 |
+
)
|
337 |
+
image_to_overwrite[batch_indices, text_to_overwrite] = False
|
338 |
+
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
|
339 |
+
|
340 |
+
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
|
341 |
+
raise ValueError(
|
342 |
+
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
|
343 |
+
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
|
344 |
+
)
|
345 |
+
|
346 |
+
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
347 |
+
final_attention_mask |= image_to_overwrite
|
348 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
349 |
+
|
350 |
+
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
|
351 |
+
batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id)
|
352 |
+
indices_to_mask = new_token_positions[batch_indices, pad_indices]
|
353 |
+
|
354 |
+
final_embedding[batch_indices, indices_to_mask] = 0
|
355 |
+
|
356 |
+
if labels is None:
|
357 |
+
final_labels = None
|
358 |
+
|
359 |
+
return final_embedding, final_attention_mask, final_labels, position_ids
|
preprocessor_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_maira2.Maira2Processor"
|
4 |
+
},
|
5 |
+
"crop_size": {
|
6 |
+
"height": 30,
|
7 |
+
"width": 30
|
8 |
+
},
|
9 |
+
"do_center_crop": true,
|
10 |
+
"do_convert_rgb": true,
|
11 |
+
"do_normalize": true,
|
12 |
+
"do_rescale": true,
|
13 |
+
"do_resize": true,
|
14 |
+
"image_mean": [
|
15 |
+
0.5307,
|
16 |
+
0.5307,
|
17 |
+
0.5307
|
18 |
+
],
|
19 |
+
"image_processor_type": "BitImageProcessor",
|
20 |
+
"image_std": [
|
21 |
+
0.2583,
|
22 |
+
0.2583,
|
23 |
+
0.2583
|
24 |
+
],
|
25 |
+
"processor_class": "Maira2Processor",
|
26 |
+
"resample": 3,
|
27 |
+
"rescale_factor": 0.00392156862745098,
|
28 |
+
"size": {
|
29 |
+
"shortest_edge": 30
|
30 |
+
}
|
31 |
+
}
|
processing_maira2.py
ADDED
@@ -0,0 +1,729 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Microsoft. All rights reserved.
|
2 |
+
# Licensed under the MSRLA License. See LICENSE in the repo root for license information.
|
3 |
+
|
4 |
+
|
5 |
+
import re
|
6 |
+
from typing import Any, TypeAlias, Union, List
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
+
from transformers import BaseImageProcessor, LlavaProcessor, PreTrainedTokenizer
|
11 |
+
from transformers.models.llava.processing_llava import LlavaProcessorKwargs
|
12 |
+
from transformers.feature_extraction_utils import BatchFeature
|
13 |
+
from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
|
14 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
|
15 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
16 |
+
|
17 |
+
SingleChatMessageType: TypeAlias = dict[str, str | int | None]
|
18 |
+
ChatMessageListType: TypeAlias = list[dict[str, str | list[SingleChatMessageType]]]
|
19 |
+
BoxType: TypeAlias = tuple[float, float, float, float]
|
20 |
+
|
21 |
+
|
22 |
+
class Maira2Processor(LlavaProcessor):
|
23 |
+
"""
|
24 |
+
Constructs a Maira2 processor similar to LlavaProcessor but with additional arguments and functions to support
|
25 |
+
multi-image grounded and non-grounded radiology report generation.
|
26 |
+
|
27 |
+
In addition to the arguments of LlavaProcessor, Maira2Processor has the following extra arguments:
|
28 |
+
|
29 |
+
Args:
|
30 |
+
phrase_start_token (`str`, *optional*, defaults to `"<obj>"`):
|
31 |
+
Special token used to denote the start of a grounded phrase (with or without box).
|
32 |
+
phrase_end_token (`str`, *optional*, defaults to `"</obj>"`):
|
33 |
+
Special token used to denote the end of a grounded phrase.
|
34 |
+
box_start_token (`str`, *optional*, defaults to `"<box>"`):
|
35 |
+
Special token used to denote the start of a bounding box.
|
36 |
+
box_end_token (`str`, *optional*, defaults to `"</box>"`):
|
37 |
+
Special token used to denote the end of a bounding box.
|
38 |
+
num_box_coord_bins (`int`, *optional*, defaults to `100`):
|
39 |
+
Number of bins used to represent the bounding box coordinates.
|
40 |
+
"""
|
41 |
+
|
42 |
+
valid_kwargs = [
|
43 |
+
"chat_template",
|
44 |
+
"patch_size",
|
45 |
+
"vision_feature_select_strategy",
|
46 |
+
"image_token",
|
47 |
+
"phrase_start_token",
|
48 |
+
"phrase_end_token",
|
49 |
+
"box_start_token",
|
50 |
+
"box_end_token",
|
51 |
+
"num_box_coord_bins",
|
52 |
+
]
|
53 |
+
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
image_processor: BaseImageProcessor = None,
|
57 |
+
tokenizer: PreTrainedTokenizer = None,
|
58 |
+
patch_size: int | None = None,
|
59 |
+
vision_feature_select_strategy: str | None = None,
|
60 |
+
chat_template: str | None = None,
|
61 |
+
image_token: str = "<image>",
|
62 |
+
phrase_start_token: str = "<obj>",
|
63 |
+
phrase_end_token: str = "</obj>",
|
64 |
+
box_start_token: str = "<box>",
|
65 |
+
box_end_token: str = "</box>",
|
66 |
+
num_box_coord_bins: int = 100,
|
67 |
+
**kwargs: Any,
|
68 |
+
) -> None:
|
69 |
+
super().__init__(
|
70 |
+
image_processor=image_processor,
|
71 |
+
tokenizer=tokenizer,
|
72 |
+
patch_size=patch_size,
|
73 |
+
vision_feature_select_strategy=vision_feature_select_strategy,
|
74 |
+
chat_template=chat_template,
|
75 |
+
image_token=image_token,
|
76 |
+
**kwargs,
|
77 |
+
)
|
78 |
+
|
79 |
+
self.phrase_start_token = phrase_start_token
|
80 |
+
self.phrase_end_token = phrase_end_token
|
81 |
+
self.box_start_token = box_start_token
|
82 |
+
self.box_end_token = box_end_token
|
83 |
+
self.num_box_coord_bins = num_box_coord_bins
|
84 |
+
|
85 |
+
@staticmethod
|
86 |
+
def _normalize_image(image: Image.Image) -> Image.Image:
|
87 |
+
"""
|
88 |
+
This function normalizes the input image to have pixel values in the range [0, 255].
|
89 |
+
|
90 |
+
Args:
|
91 |
+
image (Image.Image | np.ndarray):
|
92 |
+
The input image to be normalized.
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
Image.Image: The normalized image in grayscale.
|
96 |
+
"""
|
97 |
+
image_np = np.array(image.convert("L"))
|
98 |
+
image_np = image_np.astype(float)
|
99 |
+
image_np -= image_np.min()
|
100 |
+
image_np /= image_np.max()
|
101 |
+
image_np *= 255
|
102 |
+
image_np = image_np.astype(np.uint8)
|
103 |
+
|
104 |
+
return Image.fromarray(image_np).convert("L")
|
105 |
+
|
106 |
+
def _normalize_and_stack_images(
|
107 |
+
self,
|
108 |
+
current_frontal: Image.Image,
|
109 |
+
current_lateral: Image.Image | None,
|
110 |
+
prior_frontal: Image.Image | None,
|
111 |
+
) -> list[Image.Image]:
|
112 |
+
"""
|
113 |
+
This function normalizes the input images and stacks them together. The images are stacked in the order of
|
114 |
+
current_frontal, current_lateral, and prior_frontal. The order of images is important, since it must match the
|
115 |
+
order of the images in the prompt, which is frontal, then lateral then prior.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
current_frontal (Image.Image):
|
119 |
+
The current frontal image.
|
120 |
+
current_lateral (Image.Image | None):
|
121 |
+
The current lateral image.
|
122 |
+
prior_frontal (Image.Image | None):
|
123 |
+
The prior frontal image.
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
list[Image.Image]: The normalized images stacked together.
|
127 |
+
"""
|
128 |
+
images = [self._normalize_image(current_frontal)]
|
129 |
+
if current_lateral is not None:
|
130 |
+
images.append(self._normalize_image(current_lateral))
|
131 |
+
if prior_frontal is not None:
|
132 |
+
images.append(self._normalize_image(prior_frontal))
|
133 |
+
return images
|
134 |
+
|
135 |
+
@staticmethod
|
136 |
+
def _get_section_text_or_missing_text(section: str | None) -> str:
|
137 |
+
"""
|
138 |
+
This function returns the input section text if it is not None and not empty, otherwise it returns a missing
|
139 |
+
section text "N/A".
|
140 |
+
|
141 |
+
Args:
|
142 |
+
section (str | None):
|
143 |
+
The input section text.
|
144 |
+
|
145 |
+
Returns:
|
146 |
+
str: The section text if it is not None and not empty, otherwise "N/A".
|
147 |
+
"""
|
148 |
+
missing_section_text = "N/A"
|
149 |
+
if not isinstance(section, str) or len(section) == 0:
|
150 |
+
return missing_section_text
|
151 |
+
return section
|
152 |
+
|
153 |
+
@staticmethod
|
154 |
+
def _construct_image_chat_messages_for_reporting(has_prior: bool, has_lateral: bool) -> list[SingleChatMessageType]:
|
155 |
+
"""
|
156 |
+
This function constructs user chat messages based on the presence of the prior and lateral images.
|
157 |
+
|
158 |
+
Args:
|
159 |
+
has_prior (bool):
|
160 |
+
A boolean indicating whether the prior image is present.
|
161 |
+
has_lateral (bool):
|
162 |
+
A boolean indicating whether the lateral image is present.
|
163 |
+
|
164 |
+
Returns:
|
165 |
+
list[SingleChatMessageType]: The image prompt messages in the form of a list of dictionaries.
|
166 |
+
|
167 |
+
Example:
|
168 |
+
|
169 |
+
```python
|
170 |
+
>>> _construct_image_chat_messages_for_reporting(has_prior=True, has_lateral=True)
|
171 |
+
>>> # [
|
172 |
+
>>> # {"index": None, "text": "Given the current frontal image", "type": "text"},
|
173 |
+
>>> # {"index": 0, "text": None, "type": "image"},
|
174 |
+
>>> # {"index": None, "text": " the current lateral image", "type": "text"},
|
175 |
+
>>> # {"index": 1, "text": None, "type": "image"},
|
176 |
+
>>> # {"index": None, "text": " and the prior frontal image", "type": "text"},
|
177 |
+
>>> # {"index": 2, "text": None, "type": "image"},
|
178 |
+
>>> # ]
|
179 |
+
```
|
180 |
+
"""
|
181 |
+
|
182 |
+
def _add_single_image_to_chat_messages(prompt_text: str, image_index: int) -> None:
|
183 |
+
image_prompt.extend(
|
184 |
+
[
|
185 |
+
{"index": None, "text": prompt_text, "type": "text"},
|
186 |
+
{"index": image_index, "text": None, "type": "image"},
|
187 |
+
]
|
188 |
+
)
|
189 |
+
|
190 |
+
image_prompt: list[SingleChatMessageType] = []
|
191 |
+
image_index = 0
|
192 |
+
if not has_prior and not has_lateral:
|
193 |
+
_add_single_image_to_chat_messages("Given the current frontal image only", image_index)
|
194 |
+
else:
|
195 |
+
_add_single_image_to_chat_messages("Given the current frontal image", image_index)
|
196 |
+
image_index += 1
|
197 |
+
if has_prior:
|
198 |
+
if has_lateral:
|
199 |
+
_add_single_image_to_chat_messages(" the current lateral image", image_index)
|
200 |
+
image_index += 1
|
201 |
+
_add_single_image_to_chat_messages(" and the prior frontal image", image_index)
|
202 |
+
else:
|
203 |
+
if has_lateral:
|
204 |
+
_add_single_image_to_chat_messages(" and the current lateral image", image_index)
|
205 |
+
return image_prompt
|
206 |
+
|
207 |
+
def _construct_chat_messages_reporting(
|
208 |
+
self,
|
209 |
+
has_prior: bool,
|
210 |
+
has_lateral: bool,
|
211 |
+
indication: str | None,
|
212 |
+
technique: str | None,
|
213 |
+
comparison: str | None,
|
214 |
+
prior_report: str | None,
|
215 |
+
get_grounding: bool = False,
|
216 |
+
assistant_text: str | None = None,
|
217 |
+
) -> ChatMessageListType:
|
218 |
+
"""
|
219 |
+
This function constructs the chat messages for reporting used in the grounded and non-grounded reporting tasks.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
has_prior (bool):
|
223 |
+
A boolean indicating whether the prior image is present.
|
224 |
+
has_lateral (bool):
|
225 |
+
A boolean indicating whether the lateral image is present.
|
226 |
+
indication (str | None):
|
227 |
+
The indication section text.
|
228 |
+
technique (str | None):
|
229 |
+
The technique section text.
|
230 |
+
comparison (str | None):
|
231 |
+
The comparison section text.
|
232 |
+
prior_report (str | None):
|
233 |
+
The prior report section text.
|
234 |
+
get_grounding (bool):
|
235 |
+
A boolean indicating whether to get the grounding information.
|
236 |
+
assistant_text (str | None):
|
237 |
+
The assistant text (can be set to None for ordinary inference).
|
238 |
+
|
239 |
+
Returns:
|
240 |
+
ChatMessageListType: The chat messages for reporting in the form of a list of dictionaries.
|
241 |
+
|
242 |
+
Example:
|
243 |
+
|
244 |
+
```python
|
245 |
+
>>> _construct_chat_messages_reporting(
|
246 |
+
>>> has_prior=True,
|
247 |
+
>>> has_lateral=True,
|
248 |
+
>>> indication="indication text from report goes here",
|
249 |
+
>>> technique="technique text from report goes here",
|
250 |
+
>>> comparison="comparison text from report goes here",
|
251 |
+
>>> prior_report="prior reporting text goes here",
|
252 |
+
>>> get_grounding=False,
|
253 |
+
>>> assistant_text=None,
|
254 |
+
>>> )
|
255 |
+
>>> # [
|
256 |
+
>>> # {"index": None, "text": "Given the current frontal image", "type": "text"},
|
257 |
+
>>> # {"index": 0, "text": None, "type": "image"},
|
258 |
+
>>> # {"index": None, "text": " the current lateral image", "type": "text"},
|
259 |
+
>>> # {"index": 1, "text": None, "type": "image"},
|
260 |
+
>>> # {"index": None, "text": " and the prior frontal image", "type": "text"},
|
261 |
+
>>> # {"index": 2, "text": None, "type": "image"},
|
262 |
+
>>> # {"index": None, "text": " PRIOR_REPORT: prior reporting text goes here", "type": "text"},
|
263 |
+
>>> # {"index": None, "text": " Provide a description of the findings in the radiology study in comparison to the "
|
264 |
+
>>> # "prior frontal image. INDICATION: indication text from report goes here TECHNIQUE: technique text from report "
|
265 |
+
>>> # "goes here COMPARISON: comparison text from report goes here", "type": "text"},
|
266 |
+
>>> # ]
|
267 |
+
```
|
268 |
+
"""
|
269 |
+
indication = self._get_section_text_or_missing_text(indication)
|
270 |
+
technique = self._get_section_text_or_missing_text(technique)
|
271 |
+
comparison = self._get_section_text_or_missing_text(comparison)
|
272 |
+
prior_report = self._get_section_text_or_missing_text(prior_report)
|
273 |
+
|
274 |
+
prompt = self._construct_image_chat_messages_for_reporting(has_prior=has_prior, has_lateral=has_lateral)
|
275 |
+
|
276 |
+
if has_prior:
|
277 |
+
prompt.append({"index": None, "text": f" PRIOR_REPORT: {prior_report}", "type": "text"})
|
278 |
+
|
279 |
+
if get_grounding:
|
280 |
+
prompt.append(
|
281 |
+
{
|
282 |
+
"index": None,
|
283 |
+
"text": " Provide a description of the findings in the radiology study in comparison to the "
|
284 |
+
"prior frontal image. Each finding should be described as a self-contained plain-text sentence."
|
285 |
+
" If the finding is groundable, locate the finding in the current frontal chest X-ray image, "
|
286 |
+
"with bounding boxes indicating all locations where it can be seen in the current frontal "
|
287 |
+
"image. Otherwise, generate just the ungrounded finding without bounding boxes. INDICATION: "
|
288 |
+
f"{indication} TECHNIQUE: {technique} COMPARISON: {comparison}",
|
289 |
+
"type": "text",
|
290 |
+
}
|
291 |
+
)
|
292 |
+
else:
|
293 |
+
prompt.append(
|
294 |
+
{
|
295 |
+
"index": None,
|
296 |
+
"text": " Provide a description of the findings in the radiology study in comparison to the "
|
297 |
+
f"prior frontal image. INDICATION: {indication} TECHNIQUE: {technique} COMPARISON: "
|
298 |
+
f"{comparison}",
|
299 |
+
"type": "text",
|
300 |
+
}
|
301 |
+
)
|
302 |
+
messages: ChatMessageListType = [{"content": prompt, "role": "user"}]
|
303 |
+
if assistant_text is not None:
|
304 |
+
messages.append({"content": [{"index": None, "text": assistant_text, "type": "text"}], "role": "assistant"})
|
305 |
+
return messages
|
306 |
+
|
307 |
+
def _construct_chat_messages_phrase_grounding(
|
308 |
+
self, phrase: str, assistant_text: str | None = None
|
309 |
+
) -> ChatMessageListType:
|
310 |
+
"""
|
311 |
+
This function constructs the chat messages for phrase grounding used in the phrase grounding task.
|
312 |
+
|
313 |
+
Args:
|
314 |
+
phrase (str):
|
315 |
+
The phrase to be grounded.
|
316 |
+
assistant_text (str | None):
|
317 |
+
The assistant text (can be set to None for ordinary inference).
|
318 |
+
|
319 |
+
Returns:
|
320 |
+
ChatMessageListType: The chat messages for phrase grounding in the form of a list of dictionaries.
|
321 |
+
"""
|
322 |
+
prompt: list[SingleChatMessageType] = [
|
323 |
+
{"index": None, "text": "Given the current frontal image", "type": "text"},
|
324 |
+
{"index": 0, "text": None, "type": "image"},
|
325 |
+
{
|
326 |
+
"index": None,
|
327 |
+
"text": f" Repeat the following finding as a grounded phrase with bounding boxes indicating all "
|
328 |
+
f"locations where it can be seen in the given chest X-ray image. Finding: {phrase}",
|
329 |
+
"type": "text",
|
330 |
+
},
|
331 |
+
]
|
332 |
+
messages: ChatMessageListType = [{"content": prompt, "role": "user"}]
|
333 |
+
if assistant_text is not None:
|
334 |
+
messages.append({"content": [{"index": None, "text": assistant_text, "type": "text"}], "role": "assistant"})
|
335 |
+
return messages
|
336 |
+
|
337 |
+
def format_reporting_input(
|
338 |
+
self,
|
339 |
+
current_frontal: Image.Image,
|
340 |
+
current_lateral: Image.Image | None,
|
341 |
+
prior_frontal: Image.Image | None,
|
342 |
+
indication: str | None,
|
343 |
+
technique: str | None,
|
344 |
+
comparison: str | None,
|
345 |
+
prior_report: str | None,
|
346 |
+
get_grounding: bool = False,
|
347 |
+
assistant_text: str | None = None,
|
348 |
+
) -> tuple[str, list[Image.Image]]:
|
349 |
+
"""
|
350 |
+
This function formats the reporting prompt for the grounded and non-grounded reporting tasks from the given
|
351 |
+
input images and text sections. The images are normalized and stacked together in the right order.
|
352 |
+
|
353 |
+
Args:
|
354 |
+
current_frontal (Image.Image):
|
355 |
+
The current frontal image.
|
356 |
+
current_lateral (Image.Image | None):
|
357 |
+
The current lateral image.
|
358 |
+
prior_frontal (Image.Image | None):
|
359 |
+
The prior frontal image.
|
360 |
+
indication (str | None):
|
361 |
+
The indication section text.
|
362 |
+
technique (str | None):
|
363 |
+
The technique section text.
|
364 |
+
comparison (str | None):
|
365 |
+
The comparison section text.
|
366 |
+
prior_report (str | None):
|
367 |
+
The prior report section text.
|
368 |
+
get_grounding (bool):
|
369 |
+
A boolean indicating whether to construct the prompt for grounded or non-grounded reporting.
|
370 |
+
assistant_text (str | None): The assistant text (can be set to None for ordinary inference).
|
371 |
+
|
372 |
+
Returns:
|
373 |
+
tuple[str, list[Image.Image]]: The formatted prompt text and the normalized images stacked in the right order.
|
374 |
+
"""
|
375 |
+
images = self._normalize_and_stack_images(
|
376 |
+
current_frontal=current_frontal,
|
377 |
+
current_lateral=current_lateral,
|
378 |
+
prior_frontal=prior_frontal,
|
379 |
+
)
|
380 |
+
messages = self._construct_chat_messages_reporting(
|
381 |
+
has_prior=prior_frontal is not None,
|
382 |
+
has_lateral=current_lateral is not None,
|
383 |
+
indication=indication,
|
384 |
+
technique=technique,
|
385 |
+
comparison=comparison,
|
386 |
+
prior_report=prior_report,
|
387 |
+
get_grounding=get_grounding,
|
388 |
+
assistant_text=assistant_text,
|
389 |
+
)
|
390 |
+
add_generation_prompt = assistant_text is None
|
391 |
+
text = self.tokenizer.apply_chat_template(messages, add_generation_prompt=add_generation_prompt, tokenize=False)
|
392 |
+
return text, images
|
393 |
+
|
394 |
+
def format_phrase_grounding_input(
|
395 |
+
self,
|
396 |
+
frontal_image: Image.Image,
|
397 |
+
phrase: str,
|
398 |
+
assistant_text: str | None = None,
|
399 |
+
) -> tuple[str, list[Image.Image]]:
|
400 |
+
"""
|
401 |
+
This function formats the phrase grounding prompt for the phrase grounding task from the given input
|
402 |
+
image and phrase.
|
403 |
+
|
404 |
+
Args:
|
405 |
+
frontal_image (Image.Image):
|
406 |
+
The frontal image.
|
407 |
+
phrase (str):
|
408 |
+
The phrase to be grounded.
|
409 |
+
assistant_text (str | None):
|
410 |
+
The assistant text (can be set to None for ordinary inference).
|
411 |
+
|
412 |
+
Returns:
|
413 |
+
tuple[str, list[Image.Image]]: The formatted phrase grounding prompt text and the normalized image.
|
414 |
+
"""
|
415 |
+
images = self._normalize_and_stack_images(
|
416 |
+
current_frontal=frontal_image,
|
417 |
+
current_lateral=None,
|
418 |
+
prior_frontal=None,
|
419 |
+
)
|
420 |
+
messages = self._construct_chat_messages_phrase_grounding(phrase)
|
421 |
+
add_generation_prompt = assistant_text is None
|
422 |
+
text = self.tokenizer.apply_chat_template(messages, add_generation_prompt=add_generation_prompt, tokenize=False)
|
423 |
+
return text, images
|
424 |
+
|
425 |
+
def format_and_preprocess_reporting_input(
|
426 |
+
self,
|
427 |
+
current_frontal: Image.Image,
|
428 |
+
current_lateral: Image.Image | None,
|
429 |
+
prior_frontal: Image.Image | None,
|
430 |
+
indication: str | None,
|
431 |
+
technique: str | None,
|
432 |
+
comparison: str | None,
|
433 |
+
prior_report: str | None,
|
434 |
+
get_grounding: bool = False,
|
435 |
+
assistant_text: str | None = None,
|
436 |
+
**kwargs: Any,
|
437 |
+
) -> BatchFeature:
|
438 |
+
"""
|
439 |
+
This function formats and then preprocesses the input for the grounded and non-grounded reporting tasks from
|
440 |
+
the given input images and text sections and returns the batch feature for the model. It calls format_reporting_input
|
441 |
+
internally to format the input prompt and stack the images together in the right order.
|
442 |
+
|
443 |
+
Args:
|
444 |
+
current_frontal (Image.Image):
|
445 |
+
The current frontal image.
|
446 |
+
current_lateral (Image.Image | None):
|
447 |
+
The current lateral image.
|
448 |
+
prior_frontal (Image.Image | None):
|
449 |
+
The prior frontal image.
|
450 |
+
indication (str | None):
|
451 |
+
The indication section text.
|
452 |
+
technique (str | None):
|
453 |
+
The technique section text.
|
454 |
+
comparison (str | None):
|
455 |
+
The comparison section text.
|
456 |
+
prior_report (str | None):
|
457 |
+
The prior report section text.
|
458 |
+
get_grounding (bool):
|
459 |
+
A boolean indicating whether to preprocess the input for grounded or non-grounded reporting.
|
460 |
+
assistant_text (str | None):
|
461 |
+
The assistant text (can be set to None for ordinary inference).
|
462 |
+
|
463 |
+
Returns:
|
464 |
+
BatchFeature: The batch feature for the model, ready to be passed to the model.
|
465 |
+
|
466 |
+
"""
|
467 |
+
text, images = self.format_reporting_input(
|
468 |
+
current_frontal=current_frontal,
|
469 |
+
current_lateral=current_lateral,
|
470 |
+
prior_frontal=prior_frontal,
|
471 |
+
indication=indication,
|
472 |
+
technique=technique,
|
473 |
+
comparison=comparison,
|
474 |
+
prior_report=prior_report,
|
475 |
+
get_grounding=get_grounding,
|
476 |
+
assistant_text=assistant_text,
|
477 |
+
)
|
478 |
+
return self(text=text, images=images, **kwargs)
|
479 |
+
|
480 |
+
def format_and_preprocess_phrase_grounding_input(
|
481 |
+
self,
|
482 |
+
frontal_image: Image.Image,
|
483 |
+
phrase: str,
|
484 |
+
assistant_text: str | None = None,
|
485 |
+
**kwargs: Any,
|
486 |
+
) -> BatchFeature:
|
487 |
+
"""
|
488 |
+
This function formats and then processes the input for the phrase grounding task from the given input image and
|
489 |
+
phrase and returns the batch feature for the model. It calls format_phrase_grounding_input internally to format
|
490 |
+
the input prompt and normalize the image.
|
491 |
+
|
492 |
+
Args:
|
493 |
+
frontal_image (Image.Image):
|
494 |
+
The frontal image.
|
495 |
+
phrase (str):
|
496 |
+
The phrase to be grounded.
|
497 |
+
assistant_text (str | None):
|
498 |
+
The assistant text (can be set to None for ordinary inference).
|
499 |
+
|
500 |
+
Returns:
|
501 |
+
BatchFeature: The batch feature for the model, ready to be passed to the model.
|
502 |
+
"""
|
503 |
+
text, images = self.format_phrase_grounding_input(
|
504 |
+
frontal_image=frontal_image,
|
505 |
+
phrase=phrase,
|
506 |
+
assistant_text=assistant_text,
|
507 |
+
)
|
508 |
+
return self(text=text, images=images, **kwargs)
|
509 |
+
|
510 |
+
def _get_text_between_delimiters(self, text: str, begin_token: str, end_token: str) -> list[str]:
|
511 |
+
"""
|
512 |
+
This function splits the input text into a list of substrings beased on the given begin and end tokens.
|
513 |
+
|
514 |
+
Args:
|
515 |
+
text (str):
|
516 |
+
The input text to be split.
|
517 |
+
begin_token (str):
|
518 |
+
The begin token.
|
519 |
+
end_token (str):
|
520 |
+
The end token.
|
521 |
+
|
522 |
+
Returns:
|
523 |
+
list[str]: The list of substrings between the given begin and end tokens.
|
524 |
+
|
525 |
+
Example:
|
526 |
+
|
527 |
+
```python
|
528 |
+
>>> _get_text_between_delimiters("<obj>This is a grounded phrase</obj>. <obj>This is another grounded phrase</obj>.", "<obj>", "</obj>")
|
529 |
+
>>> # ["grounded phrase", "This is another grounded phrase"]
|
530 |
+
|
531 |
+
>>> _get_text_between_delimiters("<box><x10><y20><x30><y40></box><box><x50><y60><x70><y80></box>", "<box>", "</box>")
|
532 |
+
>>> # ["<x10><y20><x30><y40>", "<x50><y60><x70><y80>"]
|
533 |
+
```
|
534 |
+
"""
|
535 |
+
split_text = []
|
536 |
+
while begin_token in text:
|
537 |
+
assert text.startswith(begin_token)
|
538 |
+
end_index = text.find(end_token)
|
539 |
+
assert end_index != -1
|
540 |
+
split_text.append(text[len(begin_token) : end_index])
|
541 |
+
text = text[end_index + len(end_token) :]
|
542 |
+
assert len(text) == 0
|
543 |
+
return split_text
|
544 |
+
|
545 |
+
def convert_output_to_plaintext_or_grounded_sequence(
|
546 |
+
self, text: str
|
547 |
+
) -> str | list[tuple[str, list[BoxType] | None]]:
|
548 |
+
"""
|
549 |
+
This function converts the input text to a grounded sequence by extracting the grounded phrases and bounding
|
550 |
+
boxes from the text. If the text is plaintext without any grounded phrases, it returns the text as is.
|
551 |
+
|
552 |
+
Args:
|
553 |
+
text (str):
|
554 |
+
The input text to be converted.
|
555 |
+
|
556 |
+
Returns:
|
557 |
+
str | list[tuple[str, list[BoxType] | None]]: The grounded sequence.
|
558 |
+
|
559 |
+
Example:
|
560 |
+
|
561 |
+
```python
|
562 |
+
>>> convert_output_to_plaintext_or_grounded_sequence("<obj>grounded phrase <box><x55><y45><x70><y56></box></obj><obj>ungrounded phrase</obj>")
|
563 |
+
>>> # [
|
564 |
+
>>> # ("grounded phrase", [(0.55, 0.45, 0.70, 0.56)]),
|
565 |
+
>>> # ("ungrounded phrase", None),
|
566 |
+
>>> # ]
|
567 |
+
|
568 |
+
>>> convert_output_to_plaintext_or_grounded_sequence("plain text")
|
569 |
+
>>> # "plain text"
|
570 |
+
```
|
571 |
+
"""
|
572 |
+
text = text.strip()
|
573 |
+
|
574 |
+
# Plain text
|
575 |
+
if not any(
|
576 |
+
[
|
577 |
+
self.phrase_start_token in text,
|
578 |
+
self.phrase_end_token in text,
|
579 |
+
self.box_start_token in text,
|
580 |
+
self.box_end_token in text,
|
581 |
+
]
|
582 |
+
):
|
583 |
+
return text
|
584 |
+
|
585 |
+
# One or more grounded phrases
|
586 |
+
grounded_phrase_texts = self._get_text_between_delimiters(text, self.phrase_start_token, self.phrase_end_token)
|
587 |
+
grounded_phrases: list[tuple[str, list[BoxType] | None]] = []
|
588 |
+
for grounded_phrase_text in grounded_phrase_texts:
|
589 |
+
if self.box_start_token in grounded_phrase_text or self.box_end_token in grounded_phrase_text:
|
590 |
+
first_box_start_index = grounded_phrase_text.find(self.box_start_token)
|
591 |
+
phrase_text = grounded_phrase_text[:first_box_start_index].strip()
|
592 |
+
boxes_text = grounded_phrase_text[first_box_start_index:]
|
593 |
+
boxes_text_list = self._get_text_between_delimiters(
|
594 |
+
boxes_text, self.box_start_token, self.box_end_token
|
595 |
+
)
|
596 |
+
boxes: list[BoxType] = []
|
597 |
+
for box_text in boxes_text_list:
|
598 |
+
# extract from <x_><y_><x_><y_>
|
599 |
+
regex = r"<x(\d+?)><y(\d+?)><x(\d+?)><y(\d+?)>"
|
600 |
+
match = re.search(regex, box_text)
|
601 |
+
if match:
|
602 |
+
x_min, y_min, x_max, y_max = match.groups()
|
603 |
+
box: BoxType = tuple( # type: ignore[assignment]
|
604 |
+
(int(coord) + 0.5) / self.num_box_coord_bins for coord in (x_min, y_min, x_max, y_max)
|
605 |
+
)
|
606 |
+
assert all(0 <= coord <= 1 for coord in box), f"Invalid box coordinates: {box}"
|
607 |
+
boxes.append(box)
|
608 |
+
else:
|
609 |
+
raise ValueError(f"Invalid box coordinates: {box_text} not matching regex {regex}")
|
610 |
+
grounded_phrases.append((phrase_text, boxes))
|
611 |
+
else:
|
612 |
+
grounded_phrases.append((grounded_phrase_text.lstrip(), None))
|
613 |
+
return grounded_phrases
|
614 |
+
|
615 |
+
@staticmethod
|
616 |
+
def adjust_box_for_original_image_size(box: BoxType, width: int, height: int) -> BoxType:
|
617 |
+
"""
|
618 |
+
This function adjusts the bounding boxes from the MAIRA-2 model output to account for the image processor
|
619 |
+
cropping the image to be square prior to the model forward pass. The box coordinates are adjusted to be
|
620 |
+
relative to the original shape of the image assuming the image processor cropped the image based on the length
|
621 |
+
of the shortest side.
|
622 |
+
|
623 |
+
Args:
|
624 |
+
box (BoxType):
|
625 |
+
The box to be adjusted, normalised to (0, 1).
|
626 |
+
width (int):
|
627 |
+
Original width of the image, in pixels.
|
628 |
+
height (int):
|
629 |
+
Original height of the image, in pixels.
|
630 |
+
|
631 |
+
Returns:
|
632 |
+
BoxType: The box normalised relative to the original size of the image.
|
633 |
+
"""
|
634 |
+
crop_width = crop_height = min(width, height)
|
635 |
+
x_offset = (width - crop_width) // 2
|
636 |
+
y_offset = (height - crop_height) // 2
|
637 |
+
|
638 |
+
norm_x_min, norm_y_min, norm_x_max, norm_y_max = box
|
639 |
+
|
640 |
+
abs_x_min = int(norm_x_min * crop_width + x_offset)
|
641 |
+
abs_x_max = int(norm_x_max * crop_width + x_offset)
|
642 |
+
abs_y_min = int(norm_y_min * crop_height + y_offset)
|
643 |
+
abs_y_max = int(norm_y_max * crop_height + y_offset)
|
644 |
+
|
645 |
+
adjusted_norm_x_min = abs_x_min / width
|
646 |
+
adjusted_norm_x_max = abs_x_max / width
|
647 |
+
adjusted_norm_y_min = abs_y_min / height
|
648 |
+
adjusted_norm_y_max = abs_y_max / height
|
649 |
+
|
650 |
+
return (adjusted_norm_x_min, adjusted_norm_y_min, adjusted_norm_x_max, adjusted_norm_y_max)
|
651 |
+
|
652 |
+
def __call__(
|
653 |
+
self,
|
654 |
+
images: ImageInput = None,
|
655 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
656 |
+
audio=None,
|
657 |
+
videos=None,
|
658 |
+
**kwargs: Unpack[LlavaProcessorKwargs],
|
659 |
+
) -> BatchFeature:
|
660 |
+
"""
|
661 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
662 |
+
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
663 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
664 |
+
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
665 |
+
of the above two methods for more information.
|
666 |
+
|
667 |
+
Args:
|
668 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
669 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
670 |
+
tensor. Both channels-first and channels-last formats are supported.
|
671 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
672 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
673 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
674 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
675 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
676 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
677 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
678 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
679 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
680 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
681 |
+
|
682 |
+
Returns:
|
683 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
684 |
+
|
685 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
686 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
687 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
688 |
+
`None`).
|
689 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
690 |
+
"""
|
691 |
+
if images is None and text is None:
|
692 |
+
raise ValueError("You have to specify at least one of `images` or `text`.")
|
693 |
+
|
694 |
+
# check if images and text inputs are reversed for BC
|
695 |
+
images, text = _validate_images_text_input_order(images, text)
|
696 |
+
|
697 |
+
output_kwargs = self._merge_kwargs(
|
698 |
+
LlavaProcessorKwargs,
|
699 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
700 |
+
**kwargs,
|
701 |
+
)
|
702 |
+
if images is not None:
|
703 |
+
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
|
704 |
+
else:
|
705 |
+
image_inputs = {}
|
706 |
+
|
707 |
+
if isinstance(text, str):
|
708 |
+
text = [text]
|
709 |
+
elif not isinstance(text, list) and not isinstance(text[0], str):
|
710 |
+
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
|
711 |
+
|
712 |
+
# try to expand inputs in processing if we have the necessary parts
|
713 |
+
prompt_strings = text
|
714 |
+
if image_inputs.get("pixel_values") is not None:
|
715 |
+
if self.patch_size is not None and self.vision_feature_select_strategy is not None:
|
716 |
+
# Replace the image token with the expanded image token sequence
|
717 |
+
pixel_values = image_inputs["pixel_values"]
|
718 |
+
height, width = get_image_size(to_numpy_array(pixel_values[0]))
|
719 |
+
num_image_tokens = (height // self.patch_size) * (width // self.patch_size) + 1
|
720 |
+
if self.vision_feature_select_strategy == "default":
|
721 |
+
num_image_tokens -= 1
|
722 |
+
|
723 |
+
prompt_strings = []
|
724 |
+
for sample in text:
|
725 |
+
sample = sample.replace(self.image_token, self.image_token * num_image_tokens)
|
726 |
+
prompt_strings.append(sample)
|
727 |
+
|
728 |
+
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
|
729 |
+
return BatchFeature(data={**text_inputs, **image_inputs})
|
processor_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"box_end_token": "</box>",
|
3 |
+
"box_start_token": "<box>",
|
4 |
+
"image_token": "<image>",
|
5 |
+
"num_box_coord_bins": 100,
|
6 |
+
"patch_size": 2,
|
7 |
+
"phrase_end_token": "</obj>",
|
8 |
+
"phrase_start_token": "<obj>",
|
9 |
+
"processor_class": "Maira2Processor",
|
10 |
+
"vision_feature_select_strategy": "default",
|
11 |
+
"auto_map": {
|
12 |
+
"AutoProcessor": "processing_maira2.Maira2Processor"
|
13 |
+
}
|
14 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,1701 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"32000": {
|
31 |
+
"content": "<obj>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": false
|
37 |
+
},
|
38 |
+
"32001": {
|
39 |
+
"content": "</obj>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": true,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": false
|
45 |
+
},
|
46 |
+
"32002": {
|
47 |
+
"content": "<x0>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": true,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": false
|
53 |
+
},
|
54 |
+
"32003": {
|
55 |
+
"content": "<x1>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": true,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"32004": {
|
63 |
+
"content": "<x2>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": true,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": false
|
69 |
+
},
|
70 |
+
"32005": {
|
71 |
+
"content": "<x3>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": true,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": false
|
77 |
+
},
|
78 |
+
"32006": {
|
79 |
+
"content": "<x4>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": true,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": false
|
85 |
+
},
|
86 |
+
"32007": {
|
87 |
+
"content": "<x5>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": true,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": false
|
93 |
+
},
|
94 |
+
"32008": {
|
95 |
+
"content": "<x6>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": true,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": false
|
101 |
+
},
|
102 |
+
"32009": {
|
103 |
+
"content": "<x7>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": true,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": false
|
109 |
+
},
|
110 |
+
"32010": {
|
111 |
+
"content": "<x8>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": true,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": false
|
117 |
+
},
|
118 |
+
"32011": {
|
119 |
+
"content": "<x9>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": true,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"32012": {
|
127 |
+
"content": "<x10>",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": true,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"32013": {
|
135 |
+
"content": "<x11>",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": true,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"32014": {
|
143 |
+
"content": "<x12>",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": true,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"32015": {
|
151 |
+
"content": "<x13>",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": true,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"32016": {
|
159 |
+
"content": "<x14>",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": true,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"32017": {
|
167 |
+
"content": "<x15>",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": true,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"32018": {
|
175 |
+
"content": "<x16>",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": true,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
},
|
182 |
+
"32019": {
|
183 |
+
"content": "<x17>",
|
184 |
+
"lstrip": false,
|
185 |
+
"normalized": true,
|
186 |
+
"rstrip": false,
|
187 |
+
"single_word": false,
|
188 |
+
"special": false
|
189 |
+
},
|
190 |
+
"32020": {
|
191 |
+
"content": "<x18>",
|
192 |
+
"lstrip": false,
|
193 |
+
"normalized": true,
|
194 |
+
"rstrip": false,
|
195 |
+
"single_word": false,
|
196 |
+
"special": false
|
197 |
+
},
|
198 |
+
"32021": {
|
199 |
+
"content": "<x19>",
|
200 |
+
"lstrip": false,
|
201 |
+
"normalized": true,
|
202 |
+
"rstrip": false,
|
203 |
+
"single_word": false,
|
204 |
+
"special": false
|
205 |
+
},
|
206 |
+
"32022": {
|
207 |
+
"content": "<x20>",
|
208 |
+
"lstrip": false,
|
209 |
+
"normalized": true,
|
210 |
+
"rstrip": false,
|
211 |
+
"single_word": false,
|
212 |
+
"special": false
|
213 |
+
},
|
214 |
+
"32023": {
|
215 |
+
"content": "<x21>",
|
216 |
+
"lstrip": false,
|
217 |
+
"normalized": true,
|
218 |
+
"rstrip": false,
|
219 |
+
"single_word": false,
|
220 |
+
"special": false
|
221 |
+
},
|
222 |
+
"32024": {
|
223 |
+
"content": "<x22>",
|
224 |
+
"lstrip": false,
|
225 |
+
"normalized": true,
|
226 |
+
"rstrip": false,
|
227 |
+
"single_word": false,
|
228 |
+
"special": false
|
229 |
+
},
|
230 |
+
"32025": {
|
231 |
+
"content": "<x23>",
|
232 |
+
"lstrip": false,
|
233 |
+
"normalized": true,
|
234 |
+
"rstrip": false,
|
235 |
+
"single_word": false,
|
236 |
+
"special": false
|
237 |
+
},
|
238 |
+
"32026": {
|
239 |
+
"content": "<x24>",
|
240 |
+
"lstrip": false,
|
241 |
+
"normalized": true,
|
242 |
+
"rstrip": false,
|
243 |
+
"single_word": false,
|
244 |
+
"special": false
|
245 |
+
},
|
246 |
+
"32027": {
|
247 |
+
"content": "<x25>",
|
248 |
+
"lstrip": false,
|
249 |
+
"normalized": true,
|
250 |
+
"rstrip": false,
|
251 |
+
"single_word": false,
|
252 |
+
"special": false
|
253 |
+
},
|
254 |
+
"32028": {
|
255 |
+
"content": "<x26>",
|
256 |
+
"lstrip": false,
|
257 |
+
"normalized": true,
|
258 |
+
"rstrip": false,
|
259 |
+
"single_word": false,
|
260 |
+
"special": false
|
261 |
+
},
|
262 |
+
"32029": {
|
263 |
+
"content": "<x27>",
|
264 |
+
"lstrip": false,
|
265 |
+
"normalized": true,
|
266 |
+
"rstrip": false,
|
267 |
+
"single_word": false,
|
268 |
+
"special": false
|
269 |
+
},
|
270 |
+
"32030": {
|
271 |
+
"content": "<x28>",
|
272 |
+
"lstrip": false,
|
273 |
+
"normalized": true,
|
274 |
+
"rstrip": false,
|
275 |
+
"single_word": false,
|
276 |
+
"special": false
|
277 |
+
},
|
278 |
+
"32031": {
|
279 |
+
"content": "<x29>",
|
280 |
+
"lstrip": false,
|
281 |
+
"normalized": true,
|
282 |
+
"rstrip": false,
|
283 |
+
"single_word": false,
|
284 |
+
"special": false
|
285 |
+
},
|
286 |
+
"32032": {
|
287 |
+
"content": "<x30>",
|
288 |
+
"lstrip": false,
|
289 |
+
"normalized": true,
|
290 |
+
"rstrip": false,
|
291 |
+
"single_word": false,
|
292 |
+
"special": false
|
293 |
+
},
|
294 |
+
"32033": {
|
295 |
+
"content": "<x31>",
|
296 |
+
"lstrip": false,
|
297 |
+
"normalized": true,
|
298 |
+
"rstrip": false,
|
299 |
+
"single_word": false,
|
300 |
+
"special": false
|
301 |
+
},
|
302 |
+
"32034": {
|
303 |
+
"content": "<x32>",
|
304 |
+
"lstrip": false,
|
305 |
+
"normalized": true,
|
306 |
+
"rstrip": false,
|
307 |
+
"single_word": false,
|
308 |
+
"special": false
|
309 |
+
},
|
310 |
+
"32035": {
|
311 |
+
"content": "<x33>",
|
312 |
+
"lstrip": false,
|
313 |
+
"normalized": true,
|
314 |
+
"rstrip": false,
|
315 |
+
"single_word": false,
|
316 |
+
"special": false
|
317 |
+
},
|
318 |
+
"32036": {
|
319 |
+
"content": "<x34>",
|
320 |
+
"lstrip": false,
|
321 |
+
"normalized": true,
|
322 |
+
"rstrip": false,
|
323 |
+
"single_word": false,
|
324 |
+
"special": false
|
325 |
+
},
|
326 |
+
"32037": {
|
327 |
+
"content": "<x35>",
|
328 |
+
"lstrip": false,
|
329 |
+
"normalized": true,
|
330 |
+
"rstrip": false,
|
331 |
+
"single_word": false,
|
332 |
+
"special": false
|
333 |
+
},
|
334 |
+
"32038": {
|
335 |
+
"content": "<x36>",
|
336 |
+
"lstrip": false,
|
337 |
+
"normalized": true,
|
338 |
+
"rstrip": false,
|
339 |
+
"single_word": false,
|
340 |
+
"special": false
|
341 |
+
},
|
342 |
+
"32039": {
|
343 |
+
"content": "<x37>",
|
344 |
+
"lstrip": false,
|
345 |
+
"normalized": true,
|
346 |
+
"rstrip": false,
|
347 |
+
"single_word": false,
|
348 |
+
"special": false
|
349 |
+
},
|
350 |
+
"32040": {
|
351 |
+
"content": "<x38>",
|
352 |
+
"lstrip": false,
|
353 |
+
"normalized": true,
|
354 |
+
"rstrip": false,
|
355 |
+
"single_word": false,
|
356 |
+
"special": false
|
357 |
+
},
|
358 |
+
"32041": {
|
359 |
+
"content": "<x39>",
|
360 |
+
"lstrip": false,
|
361 |
+
"normalized": true,
|
362 |
+
"rstrip": false,
|
363 |
+
"single_word": false,
|
364 |
+
"special": false
|
365 |
+
},
|
366 |
+
"32042": {
|
367 |
+
"content": "<x40>",
|
368 |
+
"lstrip": false,
|
369 |
+
"normalized": true,
|
370 |
+
"rstrip": false,
|
371 |
+
"single_word": false,
|
372 |
+
"special": false
|
373 |
+
},
|
374 |
+
"32043": {
|
375 |
+
"content": "<x41>",
|
376 |
+
"lstrip": false,
|
377 |
+
"normalized": true,
|
378 |
+
"rstrip": false,
|
379 |
+
"single_word": false,
|
380 |
+
"special": false
|
381 |
+
},
|
382 |
+
"32044": {
|
383 |
+
"content": "<x42>",
|
384 |
+
"lstrip": false,
|
385 |
+
"normalized": true,
|
386 |
+
"rstrip": false,
|
387 |
+
"single_word": false,
|
388 |
+
"special": false
|
389 |
+
},
|
390 |
+
"32045": {
|
391 |
+
"content": "<x43>",
|
392 |
+
"lstrip": false,
|
393 |
+
"normalized": true,
|
394 |
+
"rstrip": false,
|
395 |
+
"single_word": false,
|
396 |
+
"special": false
|
397 |
+
},
|
398 |
+
"32046": {
|
399 |
+
"content": "<x44>",
|
400 |
+
"lstrip": false,
|
401 |
+
"normalized": true,
|
402 |
+
"rstrip": false,
|
403 |
+
"single_word": false,
|
404 |
+
"special": false
|
405 |
+
},
|
406 |
+
"32047": {
|
407 |
+
"content": "<x45>",
|
408 |
+
"lstrip": false,
|
409 |
+
"normalized": true,
|
410 |
+
"rstrip": false,
|
411 |
+
"single_word": false,
|
412 |
+
"special": false
|
413 |
+
},
|
414 |
+
"32048": {
|
415 |
+
"content": "<x46>",
|
416 |
+
"lstrip": false,
|
417 |
+
"normalized": true,
|
418 |
+
"rstrip": false,
|
419 |
+
"single_word": false,
|
420 |
+
"special": false
|
421 |
+
},
|
422 |
+
"32049": {
|
423 |
+
"content": "<x47>",
|
424 |
+
"lstrip": false,
|
425 |
+
"normalized": true,
|
426 |
+
"rstrip": false,
|
427 |
+
"single_word": false,
|
428 |
+
"special": false
|
429 |
+
},
|
430 |
+
"32050": {
|
431 |
+
"content": "<x48>",
|
432 |
+
"lstrip": false,
|
433 |
+
"normalized": true,
|
434 |
+
"rstrip": false,
|
435 |
+
"single_word": false,
|
436 |
+
"special": false
|
437 |
+
},
|
438 |
+
"32051": {
|
439 |
+
"content": "<x49>",
|
440 |
+
"lstrip": false,
|
441 |
+
"normalized": true,
|
442 |
+
"rstrip": false,
|
443 |
+
"single_word": false,
|
444 |
+
"special": false
|
445 |
+
},
|
446 |
+
"32052": {
|
447 |
+
"content": "<x50>",
|
448 |
+
"lstrip": false,
|
449 |
+
"normalized": true,
|
450 |
+
"rstrip": false,
|
451 |
+
"single_word": false,
|
452 |
+
"special": false
|
453 |
+
},
|
454 |
+
"32053": {
|
455 |
+
"content": "<x51>",
|
456 |
+
"lstrip": false,
|
457 |
+
"normalized": true,
|
458 |
+
"rstrip": false,
|
459 |
+
"single_word": false,
|
460 |
+
"special": false
|
461 |
+
},
|
462 |
+
"32054": {
|
463 |
+
"content": "<x52>",
|
464 |
+
"lstrip": false,
|
465 |
+
"normalized": true,
|
466 |
+
"rstrip": false,
|
467 |
+
"single_word": false,
|
468 |
+
"special": false
|
469 |
+
},
|
470 |
+
"32055": {
|
471 |
+
"content": "<x53>",
|
472 |
+
"lstrip": false,
|
473 |
+
"normalized": true,
|
474 |
+
"rstrip": false,
|
475 |
+
"single_word": false,
|
476 |
+
"special": false
|
477 |
+
},
|
478 |
+
"32056": {
|
479 |
+
"content": "<x54>",
|
480 |
+
"lstrip": false,
|
481 |
+
"normalized": true,
|
482 |
+
"rstrip": false,
|
483 |
+
"single_word": false,
|
484 |
+
"special": false
|
485 |
+
},
|
486 |
+
"32057": {
|
487 |
+
"content": "<x55>",
|
488 |
+
"lstrip": false,
|
489 |
+
"normalized": true,
|
490 |
+
"rstrip": false,
|
491 |
+
"single_word": false,
|
492 |
+
"special": false
|
493 |
+
},
|
494 |
+
"32058": {
|
495 |
+
"content": "<x56>",
|
496 |
+
"lstrip": false,
|
497 |
+
"normalized": true,
|
498 |
+
"rstrip": false,
|
499 |
+
"single_word": false,
|
500 |
+
"special": false
|
501 |
+
},
|
502 |
+
"32059": {
|
503 |
+
"content": "<x57>",
|
504 |
+
"lstrip": false,
|
505 |
+
"normalized": true,
|
506 |
+
"rstrip": false,
|
507 |
+
"single_word": false,
|
508 |
+
"special": false
|
509 |
+
},
|
510 |
+
"32060": {
|
511 |
+
"content": "<x58>",
|
512 |
+
"lstrip": false,
|
513 |
+
"normalized": true,
|
514 |
+
"rstrip": false,
|
515 |
+
"single_word": false,
|
516 |
+
"special": false
|
517 |
+
},
|
518 |
+
"32061": {
|
519 |
+
"content": "<x59>",
|
520 |
+
"lstrip": false,
|
521 |
+
"normalized": true,
|
522 |
+
"rstrip": false,
|
523 |
+
"single_word": false,
|
524 |
+
"special": false
|
525 |
+
},
|
526 |
+
"32062": {
|
527 |
+
"content": "<x60>",
|
528 |
+
"lstrip": false,
|
529 |
+
"normalized": true,
|
530 |
+
"rstrip": false,
|
531 |
+
"single_word": false,
|
532 |
+
"special": false
|
533 |
+
},
|
534 |
+
"32063": {
|
535 |
+
"content": "<x61>",
|
536 |
+
"lstrip": false,
|
537 |
+
"normalized": true,
|
538 |
+
"rstrip": false,
|
539 |
+
"single_word": false,
|
540 |
+
"special": false
|
541 |
+
},
|
542 |
+
"32064": {
|
543 |
+
"content": "<x62>",
|
544 |
+
"lstrip": false,
|
545 |
+
"normalized": true,
|
546 |
+
"rstrip": false,
|
547 |
+
"single_word": false,
|
548 |
+
"special": false
|
549 |
+
},
|
550 |
+
"32065": {
|
551 |
+
"content": "<x63>",
|
552 |
+
"lstrip": false,
|
553 |
+
"normalized": true,
|
554 |
+
"rstrip": false,
|
555 |
+
"single_word": false,
|
556 |
+
"special": false
|
557 |
+
},
|
558 |
+
"32066": {
|
559 |
+
"content": "<x64>",
|
560 |
+
"lstrip": false,
|
561 |
+
"normalized": true,
|
562 |
+
"rstrip": false,
|
563 |
+
"single_word": false,
|
564 |
+
"special": false
|
565 |
+
},
|
566 |
+
"32067": {
|
567 |
+
"content": "<x65>",
|
568 |
+
"lstrip": false,
|
569 |
+
"normalized": true,
|
570 |
+
"rstrip": false,
|
571 |
+
"single_word": false,
|
572 |
+
"special": false
|
573 |
+
},
|
574 |
+
"32068": {
|
575 |
+
"content": "<x66>",
|
576 |
+
"lstrip": false,
|
577 |
+
"normalized": true,
|
578 |
+
"rstrip": false,
|
579 |
+
"single_word": false,
|
580 |
+
"special": false
|
581 |
+
},
|
582 |
+
"32069": {
|
583 |
+
"content": "<x67>",
|
584 |
+
"lstrip": false,
|
585 |
+
"normalized": true,
|
586 |
+
"rstrip": false,
|
587 |
+
"single_word": false,
|
588 |
+
"special": false
|
589 |
+
},
|
590 |
+
"32070": {
|
591 |
+
"content": "<x68>",
|
592 |
+
"lstrip": false,
|
593 |
+
"normalized": true,
|
594 |
+
"rstrip": false,
|
595 |
+
"single_word": false,
|
596 |
+
"special": false
|
597 |
+
},
|
598 |
+
"32071": {
|
599 |
+
"content": "<x69>",
|
600 |
+
"lstrip": false,
|
601 |
+
"normalized": true,
|
602 |
+
"rstrip": false,
|
603 |
+
"single_word": false,
|
604 |
+
"special": false
|
605 |
+
},
|
606 |
+
"32072": {
|
607 |
+
"content": "<x70>",
|
608 |
+
"lstrip": false,
|
609 |
+
"normalized": true,
|
610 |
+
"rstrip": false,
|
611 |
+
"single_word": false,
|
612 |
+
"special": false
|
613 |
+
},
|
614 |
+
"32073": {
|
615 |
+
"content": "<x71>",
|
616 |
+
"lstrip": false,
|
617 |
+
"normalized": true,
|
618 |
+
"rstrip": false,
|
619 |
+
"single_word": false,
|
620 |
+
"special": false
|
621 |
+
},
|
622 |
+
"32074": {
|
623 |
+
"content": "<x72>",
|
624 |
+
"lstrip": false,
|
625 |
+
"normalized": true,
|
626 |
+
"rstrip": false,
|
627 |
+
"single_word": false,
|
628 |
+
"special": false
|
629 |
+
},
|
630 |
+
"32075": {
|
631 |
+
"content": "<x73>",
|
632 |
+
"lstrip": false,
|
633 |
+
"normalized": true,
|
634 |
+
"rstrip": false,
|
635 |
+
"single_word": false,
|
636 |
+
"special": false
|
637 |
+
},
|
638 |
+
"32076": {
|
639 |
+
"content": "<x74>",
|
640 |
+
"lstrip": false,
|
641 |
+
"normalized": true,
|
642 |
+
"rstrip": false,
|
643 |
+
"single_word": false,
|
644 |
+
"special": false
|
645 |
+
},
|
646 |
+
"32077": {
|
647 |
+
"content": "<x75>",
|
648 |
+
"lstrip": false,
|
649 |
+
"normalized": true,
|
650 |
+
"rstrip": false,
|
651 |
+
"single_word": false,
|
652 |
+
"special": false
|
653 |
+
},
|
654 |
+
"32078": {
|
655 |
+
"content": "<x76>",
|
656 |
+
"lstrip": false,
|
657 |
+
"normalized": true,
|
658 |
+
"rstrip": false,
|
659 |
+
"single_word": false,
|
660 |
+
"special": false
|
661 |
+
},
|
662 |
+
"32079": {
|
663 |
+
"content": "<x77>",
|
664 |
+
"lstrip": false,
|
665 |
+
"normalized": true,
|
666 |
+
"rstrip": false,
|
667 |
+
"single_word": false,
|
668 |
+
"special": false
|
669 |
+
},
|
670 |
+
"32080": {
|
671 |
+
"content": "<x78>",
|
672 |
+
"lstrip": false,
|
673 |
+
"normalized": true,
|
674 |
+
"rstrip": false,
|
675 |
+
"single_word": false,
|
676 |
+
"special": false
|
677 |
+
},
|
678 |
+
"32081": {
|
679 |
+
"content": "<x79>",
|
680 |
+
"lstrip": false,
|
681 |
+
"normalized": true,
|
682 |
+
"rstrip": false,
|
683 |
+
"single_word": false,
|
684 |
+
"special": false
|
685 |
+
},
|
686 |
+
"32082": {
|
687 |
+
"content": "<x80>",
|
688 |
+
"lstrip": false,
|
689 |
+
"normalized": true,
|
690 |
+
"rstrip": false,
|
691 |
+
"single_word": false,
|
692 |
+
"special": false
|
693 |
+
},
|
694 |
+
"32083": {
|
695 |
+
"content": "<x81>",
|
696 |
+
"lstrip": false,
|
697 |
+
"normalized": true,
|
698 |
+
"rstrip": false,
|
699 |
+
"single_word": false,
|
700 |
+
"special": false
|
701 |
+
},
|
702 |
+
"32084": {
|
703 |
+
"content": "<x82>",
|
704 |
+
"lstrip": false,
|
705 |
+
"normalized": true,
|
706 |
+
"rstrip": false,
|
707 |
+
"single_word": false,
|
708 |
+
"special": false
|
709 |
+
},
|
710 |
+
"32085": {
|
711 |
+
"content": "<x83>",
|
712 |
+
"lstrip": false,
|
713 |
+
"normalized": true,
|
714 |
+
"rstrip": false,
|
715 |
+
"single_word": false,
|
716 |
+
"special": false
|
717 |
+
},
|
718 |
+
"32086": {
|
719 |
+
"content": "<x84>",
|
720 |
+
"lstrip": false,
|
721 |
+
"normalized": true,
|
722 |
+
"rstrip": false,
|
723 |
+
"single_word": false,
|
724 |
+
"special": false
|
725 |
+
},
|
726 |
+
"32087": {
|
727 |
+
"content": "<x85>",
|
728 |
+
"lstrip": false,
|
729 |
+
"normalized": true,
|
730 |
+
"rstrip": false,
|
731 |
+
"single_word": false,
|
732 |
+
"special": false
|
733 |
+
},
|
734 |
+
"32088": {
|
735 |
+
"content": "<x86>",
|
736 |
+
"lstrip": false,
|
737 |
+
"normalized": true,
|
738 |
+
"rstrip": false,
|
739 |
+
"single_word": false,
|
740 |
+
"special": false
|
741 |
+
},
|
742 |
+
"32089": {
|
743 |
+
"content": "<x87>",
|
744 |
+
"lstrip": false,
|
745 |
+
"normalized": true,
|
746 |
+
"rstrip": false,
|
747 |
+
"single_word": false,
|
748 |
+
"special": false
|
749 |
+
},
|
750 |
+
"32090": {
|
751 |
+
"content": "<x88>",
|
752 |
+
"lstrip": false,
|
753 |
+
"normalized": true,
|
754 |
+
"rstrip": false,
|
755 |
+
"single_word": false,
|
756 |
+
"special": false
|
757 |
+
},
|
758 |
+
"32091": {
|
759 |
+
"content": "<x89>",
|
760 |
+
"lstrip": false,
|
761 |
+
"normalized": true,
|
762 |
+
"rstrip": false,
|
763 |
+
"single_word": false,
|
764 |
+
"special": false
|
765 |
+
},
|
766 |
+
"32092": {
|
767 |
+
"content": "<x90>",
|
768 |
+
"lstrip": false,
|
769 |
+
"normalized": true,
|
770 |
+
"rstrip": false,
|
771 |
+
"single_word": false,
|
772 |
+
"special": false
|
773 |
+
},
|
774 |
+
"32093": {
|
775 |
+
"content": "<x91>",
|
776 |
+
"lstrip": false,
|
777 |
+
"normalized": true,
|
778 |
+
"rstrip": false,
|
779 |
+
"single_word": false,
|
780 |
+
"special": false
|
781 |
+
},
|
782 |
+
"32094": {
|
783 |
+
"content": "<x92>",
|
784 |
+
"lstrip": false,
|
785 |
+
"normalized": true,
|
786 |
+
"rstrip": false,
|
787 |
+
"single_word": false,
|
788 |
+
"special": false
|
789 |
+
},
|
790 |
+
"32095": {
|
791 |
+
"content": "<x93>",
|
792 |
+
"lstrip": false,
|
793 |
+
"normalized": true,
|
794 |
+
"rstrip": false,
|
795 |
+
"single_word": false,
|
796 |
+
"special": false
|
797 |
+
},
|
798 |
+
"32096": {
|
799 |
+
"content": "<x94>",
|
800 |
+
"lstrip": false,
|
801 |
+
"normalized": true,
|
802 |
+
"rstrip": false,
|
803 |
+
"single_word": false,
|
804 |
+
"special": false
|
805 |
+
},
|
806 |
+
"32097": {
|
807 |
+
"content": "<x95>",
|
808 |
+
"lstrip": false,
|
809 |
+
"normalized": true,
|
810 |
+
"rstrip": false,
|
811 |
+
"single_word": false,
|
812 |
+
"special": false
|
813 |
+
},
|
814 |
+
"32098": {
|
815 |
+
"content": "<x96>",
|
816 |
+
"lstrip": false,
|
817 |
+
"normalized": true,
|
818 |
+
"rstrip": false,
|
819 |
+
"single_word": false,
|
820 |
+
"special": false
|
821 |
+
},
|
822 |
+
"32099": {
|
823 |
+
"content": "<x97>",
|
824 |
+
"lstrip": false,
|
825 |
+
"normalized": true,
|
826 |
+
"rstrip": false,
|
827 |
+
"single_word": false,
|
828 |
+
"special": false
|
829 |
+
},
|
830 |
+
"32100": {
|
831 |
+
"content": "<x98>",
|
832 |
+
"lstrip": false,
|
833 |
+
"normalized": true,
|
834 |
+
"rstrip": false,
|
835 |
+
"single_word": false,
|
836 |
+
"special": false
|
837 |
+
},
|
838 |
+
"32101": {
|
839 |
+
"content": "<x99>",
|
840 |
+
"lstrip": false,
|
841 |
+
"normalized": true,
|
842 |
+
"rstrip": false,
|
843 |
+
"single_word": false,
|
844 |
+
"special": false
|
845 |
+
},
|
846 |
+
"32102": {
|
847 |
+
"content": "<y0>",
|
848 |
+
"lstrip": false,
|
849 |
+
"normalized": true,
|
850 |
+
"rstrip": false,
|
851 |
+
"single_word": false,
|
852 |
+
"special": false
|
853 |
+
},
|
854 |
+
"32103": {
|
855 |
+
"content": "<y1>",
|
856 |
+
"lstrip": false,
|
857 |
+
"normalized": true,
|
858 |
+
"rstrip": false,
|
859 |
+
"single_word": false,
|
860 |
+
"special": false
|
861 |
+
},
|
862 |
+
"32104": {
|
863 |
+
"content": "<y2>",
|
864 |
+
"lstrip": false,
|
865 |
+
"normalized": true,
|
866 |
+
"rstrip": false,
|
867 |
+
"single_word": false,
|
868 |
+
"special": false
|
869 |
+
},
|
870 |
+
"32105": {
|
871 |
+
"content": "<y3>",
|
872 |
+
"lstrip": false,
|
873 |
+
"normalized": true,
|
874 |
+
"rstrip": false,
|
875 |
+
"single_word": false,
|
876 |
+
"special": false
|
877 |
+
},
|
878 |
+
"32106": {
|
879 |
+
"content": "<y4>",
|
880 |
+
"lstrip": false,
|
881 |
+
"normalized": true,
|
882 |
+
"rstrip": false,
|
883 |
+
"single_word": false,
|
884 |
+
"special": false
|
885 |
+
},
|
886 |
+
"32107": {
|
887 |
+
"content": "<y5>",
|
888 |
+
"lstrip": false,
|
889 |
+
"normalized": true,
|
890 |
+
"rstrip": false,
|
891 |
+
"single_word": false,
|
892 |
+
"special": false
|
893 |
+
},
|
894 |
+
"32108": {
|
895 |
+
"content": "<y6>",
|
896 |
+
"lstrip": false,
|
897 |
+
"normalized": true,
|
898 |
+
"rstrip": false,
|
899 |
+
"single_word": false,
|
900 |
+
"special": false
|
901 |
+
},
|
902 |
+
"32109": {
|
903 |
+
"content": "<y7>",
|
904 |
+
"lstrip": false,
|
905 |
+
"normalized": true,
|
906 |
+
"rstrip": false,
|
907 |
+
"single_word": false,
|
908 |
+
"special": false
|
909 |
+
},
|
910 |
+
"32110": {
|
911 |
+
"content": "<y8>",
|
912 |
+
"lstrip": false,
|
913 |
+
"normalized": true,
|
914 |
+
"rstrip": false,
|
915 |
+
"single_word": false,
|
916 |
+
"special": false
|
917 |
+
},
|
918 |
+
"32111": {
|
919 |
+
"content": "<y9>",
|
920 |
+
"lstrip": false,
|
921 |
+
"normalized": true,
|
922 |
+
"rstrip": false,
|
923 |
+
"single_word": false,
|
924 |
+
"special": false
|
925 |
+
},
|
926 |
+
"32112": {
|
927 |
+
"content": "<y10>",
|
928 |
+
"lstrip": false,
|
929 |
+
"normalized": true,
|
930 |
+
"rstrip": false,
|
931 |
+
"single_word": false,
|
932 |
+
"special": false
|
933 |
+
},
|
934 |
+
"32113": {
|
935 |
+
"content": "<y11>",
|
936 |
+
"lstrip": false,
|
937 |
+
"normalized": true,
|
938 |
+
"rstrip": false,
|
939 |
+
"single_word": false,
|
940 |
+
"special": false
|
941 |
+
},
|
942 |
+
"32114": {
|
943 |
+
"content": "<y12>",
|
944 |
+
"lstrip": false,
|
945 |
+
"normalized": true,
|
946 |
+
"rstrip": false,
|
947 |
+
"single_word": false,
|
948 |
+
"special": false
|
949 |
+
},
|
950 |
+
"32115": {
|
951 |
+
"content": "<y13>",
|
952 |
+
"lstrip": false,
|
953 |
+
"normalized": true,
|
954 |
+
"rstrip": false,
|
955 |
+
"single_word": false,
|
956 |
+
"special": false
|
957 |
+
},
|
958 |
+
"32116": {
|
959 |
+
"content": "<y14>",
|
960 |
+
"lstrip": false,
|
961 |
+
"normalized": true,
|
962 |
+
"rstrip": false,
|
963 |
+
"single_word": false,
|
964 |
+
"special": false
|
965 |
+
},
|
966 |
+
"32117": {
|
967 |
+
"content": "<y15>",
|
968 |
+
"lstrip": false,
|
969 |
+
"normalized": true,
|
970 |
+
"rstrip": false,
|
971 |
+
"single_word": false,
|
972 |
+
"special": false
|
973 |
+
},
|
974 |
+
"32118": {
|
975 |
+
"content": "<y16>",
|
976 |
+
"lstrip": false,
|
977 |
+
"normalized": true,
|
978 |
+
"rstrip": false,
|
979 |
+
"single_word": false,
|
980 |
+
"special": false
|
981 |
+
},
|
982 |
+
"32119": {
|
983 |
+
"content": "<y17>",
|
984 |
+
"lstrip": false,
|
985 |
+
"normalized": true,
|
986 |
+
"rstrip": false,
|
987 |
+
"single_word": false,
|
988 |
+
"special": false
|
989 |
+
},
|
990 |
+
"32120": {
|
991 |
+
"content": "<y18>",
|
992 |
+
"lstrip": false,
|
993 |
+
"normalized": true,
|
994 |
+
"rstrip": false,
|
995 |
+
"single_word": false,
|
996 |
+
"special": false
|
997 |
+
},
|
998 |
+
"32121": {
|
999 |
+
"content": "<y19>",
|
1000 |
+
"lstrip": false,
|
1001 |
+
"normalized": true,
|
1002 |
+
"rstrip": false,
|
1003 |
+
"single_word": false,
|
1004 |
+
"special": false
|
1005 |
+
},
|
1006 |
+
"32122": {
|
1007 |
+
"content": "<y20>",
|
1008 |
+
"lstrip": false,
|
1009 |
+
"normalized": true,
|
1010 |
+
"rstrip": false,
|
1011 |
+
"single_word": false,
|
1012 |
+
"special": false
|
1013 |
+
},
|
1014 |
+
"32123": {
|
1015 |
+
"content": "<y21>",
|
1016 |
+
"lstrip": false,
|
1017 |
+
"normalized": true,
|
1018 |
+
"rstrip": false,
|
1019 |
+
"single_word": false,
|
1020 |
+
"special": false
|
1021 |
+
},
|
1022 |
+
"32124": {
|
1023 |
+
"content": "<y22>",
|
1024 |
+
"lstrip": false,
|
1025 |
+
"normalized": true,
|
1026 |
+
"rstrip": false,
|
1027 |
+
"single_word": false,
|
1028 |
+
"special": false
|
1029 |
+
},
|
1030 |
+
"32125": {
|
1031 |
+
"content": "<y23>",
|
1032 |
+
"lstrip": false,
|
1033 |
+
"normalized": true,
|
1034 |
+
"rstrip": false,
|
1035 |
+
"single_word": false,
|
1036 |
+
"special": false
|
1037 |
+
},
|
1038 |
+
"32126": {
|
1039 |
+
"content": "<y24>",
|
1040 |
+
"lstrip": false,
|
1041 |
+
"normalized": true,
|
1042 |
+
"rstrip": false,
|
1043 |
+
"single_word": false,
|
1044 |
+
"special": false
|
1045 |
+
},
|
1046 |
+
"32127": {
|
1047 |
+
"content": "<y25>",
|
1048 |
+
"lstrip": false,
|
1049 |
+
"normalized": true,
|
1050 |
+
"rstrip": false,
|
1051 |
+
"single_word": false,
|
1052 |
+
"special": false
|
1053 |
+
},
|
1054 |
+
"32128": {
|
1055 |
+
"content": "<y26>",
|
1056 |
+
"lstrip": false,
|
1057 |
+
"normalized": true,
|
1058 |
+
"rstrip": false,
|
1059 |
+
"single_word": false,
|
1060 |
+
"special": false
|
1061 |
+
},
|
1062 |
+
"32129": {
|
1063 |
+
"content": "<y27>",
|
1064 |
+
"lstrip": false,
|
1065 |
+
"normalized": true,
|
1066 |
+
"rstrip": false,
|
1067 |
+
"single_word": false,
|
1068 |
+
"special": false
|
1069 |
+
},
|
1070 |
+
"32130": {
|
1071 |
+
"content": "<y28>",
|
1072 |
+
"lstrip": false,
|
1073 |
+
"normalized": true,
|
1074 |
+
"rstrip": false,
|
1075 |
+
"single_word": false,
|
1076 |
+
"special": false
|
1077 |
+
},
|
1078 |
+
"32131": {
|
1079 |
+
"content": "<y29>",
|
1080 |
+
"lstrip": false,
|
1081 |
+
"normalized": true,
|
1082 |
+
"rstrip": false,
|
1083 |
+
"single_word": false,
|
1084 |
+
"special": false
|
1085 |
+
},
|
1086 |
+
"32132": {
|
1087 |
+
"content": "<y30>",
|
1088 |
+
"lstrip": false,
|
1089 |
+
"normalized": true,
|
1090 |
+
"rstrip": false,
|
1091 |
+
"single_word": false,
|
1092 |
+
"special": false
|
1093 |
+
},
|
1094 |
+
"32133": {
|
1095 |
+
"content": "<y31>",
|
1096 |
+
"lstrip": false,
|
1097 |
+
"normalized": true,
|
1098 |
+
"rstrip": false,
|
1099 |
+
"single_word": false,
|
1100 |
+
"special": false
|
1101 |
+
},
|
1102 |
+
"32134": {
|
1103 |
+
"content": "<y32>",
|
1104 |
+
"lstrip": false,
|
1105 |
+
"normalized": true,
|
1106 |
+
"rstrip": false,
|
1107 |
+
"single_word": false,
|
1108 |
+
"special": false
|
1109 |
+
},
|
1110 |
+
"32135": {
|
1111 |
+
"content": "<y33>",
|
1112 |
+
"lstrip": false,
|
1113 |
+
"normalized": true,
|
1114 |
+
"rstrip": false,
|
1115 |
+
"single_word": false,
|
1116 |
+
"special": false
|
1117 |
+
},
|
1118 |
+
"32136": {
|
1119 |
+
"content": "<y34>",
|
1120 |
+
"lstrip": false,
|
1121 |
+
"normalized": true,
|
1122 |
+
"rstrip": false,
|
1123 |
+
"single_word": false,
|
1124 |
+
"special": false
|
1125 |
+
},
|
1126 |
+
"32137": {
|
1127 |
+
"content": "<y35>",
|
1128 |
+
"lstrip": false,
|
1129 |
+
"normalized": true,
|
1130 |
+
"rstrip": false,
|
1131 |
+
"single_word": false,
|
1132 |
+
"special": false
|
1133 |
+
},
|
1134 |
+
"32138": {
|
1135 |
+
"content": "<y36>",
|
1136 |
+
"lstrip": false,
|
1137 |
+
"normalized": true,
|
1138 |
+
"rstrip": false,
|
1139 |
+
"single_word": false,
|
1140 |
+
"special": false
|
1141 |
+
},
|
1142 |
+
"32139": {
|
1143 |
+
"content": "<y37>",
|
1144 |
+
"lstrip": false,
|
1145 |
+
"normalized": true,
|
1146 |
+
"rstrip": false,
|
1147 |
+
"single_word": false,
|
1148 |
+
"special": false
|
1149 |
+
},
|
1150 |
+
"32140": {
|
1151 |
+
"content": "<y38>",
|
1152 |
+
"lstrip": false,
|
1153 |
+
"normalized": true,
|
1154 |
+
"rstrip": false,
|
1155 |
+
"single_word": false,
|
1156 |
+
"special": false
|
1157 |
+
},
|
1158 |
+
"32141": {
|
1159 |
+
"content": "<y39>",
|
1160 |
+
"lstrip": false,
|
1161 |
+
"normalized": true,
|
1162 |
+
"rstrip": false,
|
1163 |
+
"single_word": false,
|
1164 |
+
"special": false
|
1165 |
+
},
|
1166 |
+
"32142": {
|
1167 |
+
"content": "<y40>",
|
1168 |
+
"lstrip": false,
|
1169 |
+
"normalized": true,
|
1170 |
+
"rstrip": false,
|
1171 |
+
"single_word": false,
|
1172 |
+
"special": false
|
1173 |
+
},
|
1174 |
+
"32143": {
|
1175 |
+
"content": "<y41>",
|
1176 |
+
"lstrip": false,
|
1177 |
+
"normalized": true,
|
1178 |
+
"rstrip": false,
|
1179 |
+
"single_word": false,
|
1180 |
+
"special": false
|
1181 |
+
},
|
1182 |
+
"32144": {
|
1183 |
+
"content": "<y42>",
|
1184 |
+
"lstrip": false,
|
1185 |
+
"normalized": true,
|
1186 |
+
"rstrip": false,
|
1187 |
+
"single_word": false,
|
1188 |
+
"special": false
|
1189 |
+
},
|
1190 |
+
"32145": {
|
1191 |
+
"content": "<y43>",
|
1192 |
+
"lstrip": false,
|
1193 |
+
"normalized": true,
|
1194 |
+
"rstrip": false,
|
1195 |
+
"single_word": false,
|
1196 |
+
"special": false
|
1197 |
+
},
|
1198 |
+
"32146": {
|
1199 |
+
"content": "<y44>",
|
1200 |
+
"lstrip": false,
|
1201 |
+
"normalized": true,
|
1202 |
+
"rstrip": false,
|
1203 |
+
"single_word": false,
|
1204 |
+
"special": false
|
1205 |
+
},
|
1206 |
+
"32147": {
|
1207 |
+
"content": "<y45>",
|
1208 |
+
"lstrip": false,
|
1209 |
+
"normalized": true,
|
1210 |
+
"rstrip": false,
|
1211 |
+
"single_word": false,
|
1212 |
+
"special": false
|
1213 |
+
},
|
1214 |
+
"32148": {
|
1215 |
+
"content": "<y46>",
|
1216 |
+
"lstrip": false,
|
1217 |
+
"normalized": true,
|
1218 |
+
"rstrip": false,
|
1219 |
+
"single_word": false,
|
1220 |
+
"special": false
|
1221 |
+
},
|
1222 |
+
"32149": {
|
1223 |
+
"content": "<y47>",
|
1224 |
+
"lstrip": false,
|
1225 |
+
"normalized": true,
|
1226 |
+
"rstrip": false,
|
1227 |
+
"single_word": false,
|
1228 |
+
"special": false
|
1229 |
+
},
|
1230 |
+
"32150": {
|
1231 |
+
"content": "<y48>",
|
1232 |
+
"lstrip": false,
|
1233 |
+
"normalized": true,
|
1234 |
+
"rstrip": false,
|
1235 |
+
"single_word": false,
|
1236 |
+
"special": false
|
1237 |
+
},
|
1238 |
+
"32151": {
|
1239 |
+
"content": "<y49>",
|
1240 |
+
"lstrip": false,
|
1241 |
+
"normalized": true,
|
1242 |
+
"rstrip": false,
|
1243 |
+
"single_word": false,
|
1244 |
+
"special": false
|
1245 |
+
},
|
1246 |
+
"32152": {
|
1247 |
+
"content": "<y50>",
|
1248 |
+
"lstrip": false,
|
1249 |
+
"normalized": true,
|
1250 |
+
"rstrip": false,
|
1251 |
+
"single_word": false,
|
1252 |
+
"special": false
|
1253 |
+
},
|
1254 |
+
"32153": {
|
1255 |
+
"content": "<y51>",
|
1256 |
+
"lstrip": false,
|
1257 |
+
"normalized": true,
|
1258 |
+
"rstrip": false,
|
1259 |
+
"single_word": false,
|
1260 |
+
"special": false
|
1261 |
+
},
|
1262 |
+
"32154": {
|
1263 |
+
"content": "<y52>",
|
1264 |
+
"lstrip": false,
|
1265 |
+
"normalized": true,
|
1266 |
+
"rstrip": false,
|
1267 |
+
"single_word": false,
|
1268 |
+
"special": false
|
1269 |
+
},
|
1270 |
+
"32155": {
|
1271 |
+
"content": "<y53>",
|
1272 |
+
"lstrip": false,
|
1273 |
+
"normalized": true,
|
1274 |
+
"rstrip": false,
|
1275 |
+
"single_word": false,
|
1276 |
+
"special": false
|
1277 |
+
},
|
1278 |
+
"32156": {
|
1279 |
+
"content": "<y54>",
|
1280 |
+
"lstrip": false,
|
1281 |
+
"normalized": true,
|
1282 |
+
"rstrip": false,
|
1283 |
+
"single_word": false,
|
1284 |
+
"special": false
|
1285 |
+
},
|
1286 |
+
"32157": {
|
1287 |
+
"content": "<y55>",
|
1288 |
+
"lstrip": false,
|
1289 |
+
"normalized": true,
|
1290 |
+
"rstrip": false,
|
1291 |
+
"single_word": false,
|
1292 |
+
"special": false
|
1293 |
+
},
|
1294 |
+
"32158": {
|
1295 |
+
"content": "<y56>",
|
1296 |
+
"lstrip": false,
|
1297 |
+
"normalized": true,
|
1298 |
+
"rstrip": false,
|
1299 |
+
"single_word": false,
|
1300 |
+
"special": false
|
1301 |
+
},
|
1302 |
+
"32159": {
|
1303 |
+
"content": "<y57>",
|
1304 |
+
"lstrip": false,
|
1305 |
+
"normalized": true,
|
1306 |
+
"rstrip": false,
|
1307 |
+
"single_word": false,
|
1308 |
+
"special": false
|
1309 |
+
},
|
1310 |
+
"32160": {
|
1311 |
+
"content": "<y58>",
|
1312 |
+
"lstrip": false,
|
1313 |
+
"normalized": true,
|
1314 |
+
"rstrip": false,
|
1315 |
+
"single_word": false,
|
1316 |
+
"special": false
|
1317 |
+
},
|
1318 |
+
"32161": {
|
1319 |
+
"content": "<y59>",
|
1320 |
+
"lstrip": false,
|
1321 |
+
"normalized": true,
|
1322 |
+
"rstrip": false,
|
1323 |
+
"single_word": false,
|
1324 |
+
"special": false
|
1325 |
+
},
|
1326 |
+
"32162": {
|
1327 |
+
"content": "<y60>",
|
1328 |
+
"lstrip": false,
|
1329 |
+
"normalized": true,
|
1330 |
+
"rstrip": false,
|
1331 |
+
"single_word": false,
|
1332 |
+
"special": false
|
1333 |
+
},
|
1334 |
+
"32163": {
|
1335 |
+
"content": "<y61>",
|
1336 |
+
"lstrip": false,
|
1337 |
+
"normalized": true,
|
1338 |
+
"rstrip": false,
|
1339 |
+
"single_word": false,
|
1340 |
+
"special": false
|
1341 |
+
},
|
1342 |
+
"32164": {
|
1343 |
+
"content": "<y62>",
|
1344 |
+
"lstrip": false,
|
1345 |
+
"normalized": true,
|
1346 |
+
"rstrip": false,
|
1347 |
+
"single_word": false,
|
1348 |
+
"special": false
|
1349 |
+
},
|
1350 |
+
"32165": {
|
1351 |
+
"content": "<y63>",
|
1352 |
+
"lstrip": false,
|
1353 |
+
"normalized": true,
|
1354 |
+
"rstrip": false,
|
1355 |
+
"single_word": false,
|
1356 |
+
"special": false
|
1357 |
+
},
|
1358 |
+
"32166": {
|
1359 |
+
"content": "<y64>",
|
1360 |
+
"lstrip": false,
|
1361 |
+
"normalized": true,
|
1362 |
+
"rstrip": false,
|
1363 |
+
"single_word": false,
|
1364 |
+
"special": false
|
1365 |
+
},
|
1366 |
+
"32167": {
|
1367 |
+
"content": "<y65>",
|
1368 |
+
"lstrip": false,
|
1369 |
+
"normalized": true,
|
1370 |
+
"rstrip": false,
|
1371 |
+
"single_word": false,
|
1372 |
+
"special": false
|
1373 |
+
},
|
1374 |
+
"32168": {
|
1375 |
+
"content": "<y66>",
|
1376 |
+
"lstrip": false,
|
1377 |
+
"normalized": true,
|
1378 |
+
"rstrip": false,
|
1379 |
+
"single_word": false,
|
1380 |
+
"special": false
|
1381 |
+
},
|
1382 |
+
"32169": {
|
1383 |
+
"content": "<y67>",
|
1384 |
+
"lstrip": false,
|
1385 |
+
"normalized": true,
|
1386 |
+
"rstrip": false,
|
1387 |
+
"single_word": false,
|
1388 |
+
"special": false
|
1389 |
+
},
|
1390 |
+
"32170": {
|
1391 |
+
"content": "<y68>",
|
1392 |
+
"lstrip": false,
|
1393 |
+
"normalized": true,
|
1394 |
+
"rstrip": false,
|
1395 |
+
"single_word": false,
|
1396 |
+
"special": false
|
1397 |
+
},
|
1398 |
+
"32171": {
|
1399 |
+
"content": "<y69>",
|
1400 |
+
"lstrip": false,
|
1401 |
+
"normalized": true,
|
1402 |
+
"rstrip": false,
|
1403 |
+
"single_word": false,
|
1404 |
+
"special": false
|
1405 |
+
},
|
1406 |
+
"32172": {
|
1407 |
+
"content": "<y70>",
|
1408 |
+
"lstrip": false,
|
1409 |
+
"normalized": true,
|
1410 |
+
"rstrip": false,
|
1411 |
+
"single_word": false,
|
1412 |
+
"special": false
|
1413 |
+
},
|
1414 |
+
"32173": {
|
1415 |
+
"content": "<y71>",
|
1416 |
+
"lstrip": false,
|
1417 |
+
"normalized": true,
|
1418 |
+
"rstrip": false,
|
1419 |
+
"single_word": false,
|
1420 |
+
"special": false
|
1421 |
+
},
|
1422 |
+
"32174": {
|
1423 |
+
"content": "<y72>",
|
1424 |
+
"lstrip": false,
|
1425 |
+
"normalized": true,
|
1426 |
+
"rstrip": false,
|
1427 |
+
"single_word": false,
|
1428 |
+
"special": false
|
1429 |
+
},
|
1430 |
+
"32175": {
|
1431 |
+
"content": "<y73>",
|
1432 |
+
"lstrip": false,
|
1433 |
+
"normalized": true,
|
1434 |
+
"rstrip": false,
|
1435 |
+
"single_word": false,
|
1436 |
+
"special": false
|
1437 |
+
},
|
1438 |
+
"32176": {
|
1439 |
+
"content": "<y74>",
|
1440 |
+
"lstrip": false,
|
1441 |
+
"normalized": true,
|
1442 |
+
"rstrip": false,
|
1443 |
+
"single_word": false,
|
1444 |
+
"special": false
|
1445 |
+
},
|
1446 |
+
"32177": {
|
1447 |
+
"content": "<y75>",
|
1448 |
+
"lstrip": false,
|
1449 |
+
"normalized": true,
|
1450 |
+
"rstrip": false,
|
1451 |
+
"single_word": false,
|
1452 |
+
"special": false
|
1453 |
+
},
|
1454 |
+
"32178": {
|
1455 |
+
"content": "<y76>",
|
1456 |
+
"lstrip": false,
|
1457 |
+
"normalized": true,
|
1458 |
+
"rstrip": false,
|
1459 |
+
"single_word": false,
|
1460 |
+
"special": false
|
1461 |
+
},
|
1462 |
+
"32179": {
|
1463 |
+
"content": "<y77>",
|
1464 |
+
"lstrip": false,
|
1465 |
+
"normalized": true,
|
1466 |
+
"rstrip": false,
|
1467 |
+
"single_word": false,
|
1468 |
+
"special": false
|
1469 |
+
},
|
1470 |
+
"32180": {
|
1471 |
+
"content": "<y78>",
|
1472 |
+
"lstrip": false,
|
1473 |
+
"normalized": true,
|
1474 |
+
"rstrip": false,
|
1475 |
+
"single_word": false,
|
1476 |
+
"special": false
|
1477 |
+
},
|
1478 |
+
"32181": {
|
1479 |
+
"content": "<y79>",
|
1480 |
+
"lstrip": false,
|
1481 |
+
"normalized": true,
|
1482 |
+
"rstrip": false,
|
1483 |
+
"single_word": false,
|
1484 |
+
"special": false
|
1485 |
+
},
|
1486 |
+
"32182": {
|
1487 |
+
"content": "<y80>",
|
1488 |
+
"lstrip": false,
|
1489 |
+
"normalized": true,
|
1490 |
+
"rstrip": false,
|
1491 |
+
"single_word": false,
|
1492 |
+
"special": false
|
1493 |
+
},
|
1494 |
+
"32183": {
|
1495 |
+
"content": "<y81>",
|
1496 |
+
"lstrip": false,
|
1497 |
+
"normalized": true,
|
1498 |
+
"rstrip": false,
|
1499 |
+
"single_word": false,
|
1500 |
+
"special": false
|
1501 |
+
},
|
1502 |
+
"32184": {
|
1503 |
+
"content": "<y82>",
|
1504 |
+
"lstrip": false,
|
1505 |
+
"normalized": true,
|
1506 |
+
"rstrip": false,
|
1507 |
+
"single_word": false,
|
1508 |
+
"special": false
|
1509 |
+
},
|
1510 |
+
"32185": {
|
1511 |
+
"content": "<y83>",
|
1512 |
+
"lstrip": false,
|
1513 |
+
"normalized": true,
|
1514 |
+
"rstrip": false,
|
1515 |
+
"single_word": false,
|
1516 |
+
"special": false
|
1517 |
+
},
|
1518 |
+
"32186": {
|
1519 |
+
"content": "<y84>",
|
1520 |
+
"lstrip": false,
|
1521 |
+
"normalized": true,
|
1522 |
+
"rstrip": false,
|
1523 |
+
"single_word": false,
|
1524 |
+
"special": false
|
1525 |
+
},
|
1526 |
+
"32187": {
|
1527 |
+
"content": "<y85>",
|
1528 |
+
"lstrip": false,
|
1529 |
+
"normalized": true,
|
1530 |
+
"rstrip": false,
|
1531 |
+
"single_word": false,
|
1532 |
+
"special": false
|
1533 |
+
},
|
1534 |
+
"32188": {
|
1535 |
+
"content": "<y86>",
|
1536 |
+
"lstrip": false,
|
1537 |
+
"normalized": true,
|
1538 |
+
"rstrip": false,
|
1539 |
+
"single_word": false,
|
1540 |
+
"special": false
|
1541 |
+
},
|
1542 |
+
"32189": {
|
1543 |
+
"content": "<y87>",
|
1544 |
+
"lstrip": false,
|
1545 |
+
"normalized": true,
|
1546 |
+
"rstrip": false,
|
1547 |
+
"single_word": false,
|
1548 |
+
"special": false
|
1549 |
+
},
|
1550 |
+
"32190": {
|
1551 |
+
"content": "<y88>",
|
1552 |
+
"lstrip": false,
|
1553 |
+
"normalized": true,
|
1554 |
+
"rstrip": false,
|
1555 |
+
"single_word": false,
|
1556 |
+
"special": false
|
1557 |
+
},
|
1558 |
+
"32191": {
|
1559 |
+
"content": "<y89>",
|
1560 |
+
"lstrip": false,
|
1561 |
+
"normalized": true,
|
1562 |
+
"rstrip": false,
|
1563 |
+
"single_word": false,
|
1564 |
+
"special": false
|
1565 |
+
},
|
1566 |
+
"32192": {
|
1567 |
+
"content": "<y90>",
|
1568 |
+
"lstrip": false,
|
1569 |
+
"normalized": true,
|
1570 |
+
"rstrip": false,
|
1571 |
+
"single_word": false,
|
1572 |
+
"special": false
|
1573 |
+
},
|
1574 |
+
"32193": {
|
1575 |
+
"content": "<y91>",
|
1576 |
+
"lstrip": false,
|
1577 |
+
"normalized": true,
|
1578 |
+
"rstrip": false,
|
1579 |
+
"single_word": false,
|
1580 |
+
"special": false
|
1581 |
+
},
|
1582 |
+
"32194": {
|
1583 |
+
"content": "<y92>",
|
1584 |
+
"lstrip": false,
|
1585 |
+
"normalized": true,
|
1586 |
+
"rstrip": false,
|
1587 |
+
"single_word": false,
|
1588 |
+
"special": false
|
1589 |
+
},
|
1590 |
+
"32195": {
|
1591 |
+
"content": "<y93>",
|
1592 |
+
"lstrip": false,
|
1593 |
+
"normalized": true,
|
1594 |
+
"rstrip": false,
|
1595 |
+
"single_word": false,
|
1596 |
+
"special": false
|
1597 |
+
},
|
1598 |
+
"32196": {
|
1599 |
+
"content": "<y94>",
|
1600 |
+
"lstrip": false,
|
1601 |
+
"normalized": true,
|
1602 |
+
"rstrip": false,
|
1603 |
+
"single_word": false,
|
1604 |
+
"special": false
|
1605 |
+
},
|
1606 |
+
"32197": {
|
1607 |
+
"content": "<y95>",
|
1608 |
+
"lstrip": false,
|
1609 |
+
"normalized": true,
|
1610 |
+
"rstrip": false,
|
1611 |
+
"single_word": false,
|
1612 |
+
"special": false
|
1613 |
+
},
|
1614 |
+
"32198": {
|
1615 |
+
"content": "<y96>",
|
1616 |
+
"lstrip": false,
|
1617 |
+
"normalized": true,
|
1618 |
+
"rstrip": false,
|
1619 |
+
"single_word": false,
|
1620 |
+
"special": false
|
1621 |
+
},
|
1622 |
+
"32199": {
|
1623 |
+
"content": "<y97>",
|
1624 |
+
"lstrip": false,
|
1625 |
+
"normalized": true,
|
1626 |
+
"rstrip": false,
|
1627 |
+
"single_word": false,
|
1628 |
+
"special": false
|
1629 |
+
},
|
1630 |
+
"32200": {
|
1631 |
+
"content": "<y98>",
|
1632 |
+
"lstrip": false,
|
1633 |
+
"normalized": true,
|
1634 |
+
"rstrip": false,
|
1635 |
+
"single_word": false,
|
1636 |
+
"special": false
|
1637 |
+
},
|
1638 |
+
"32201": {
|
1639 |
+
"content": "<y99>",
|
1640 |
+
"lstrip": false,
|
1641 |
+
"normalized": true,
|
1642 |
+
"rstrip": false,
|
1643 |
+
"single_word": false,
|
1644 |
+
"special": false
|
1645 |
+
},
|
1646 |
+
"32202": {
|
1647 |
+
"content": "<box>",
|
1648 |
+
"lstrip": false,
|
1649 |
+
"normalized": true,
|
1650 |
+
"rstrip": false,
|
1651 |
+
"single_word": false,
|
1652 |
+
"special": false
|
1653 |
+
},
|
1654 |
+
"32203": {
|
1655 |
+
"content": "</box>",
|
1656 |
+
"lstrip": false,
|
1657 |
+
"normalized": true,
|
1658 |
+
"rstrip": false,
|
1659 |
+
"single_word": false,
|
1660 |
+
"special": false
|
1661 |
+
},
|
1662 |
+
"32204": {
|
1663 |
+
"content": "<image>",
|
1664 |
+
"lstrip": false,
|
1665 |
+
"normalized": true,
|
1666 |
+
"rstrip": false,
|
1667 |
+
"single_word": false,
|
1668 |
+
"special": false
|
1669 |
+
},
|
1670 |
+
"32205": {
|
1671 |
+
"content": "<prev_im>",
|
1672 |
+
"lstrip": false,
|
1673 |
+
"normalized": true,
|
1674 |
+
"rstrip": false,
|
1675 |
+
"single_word": false,
|
1676 |
+
"special": false
|
1677 |
+
},
|
1678 |
+
"32206": {
|
1679 |
+
"content": "<lat_image>",
|
1680 |
+
"lstrip": false,
|
1681 |
+
"normalized": true,
|
1682 |
+
"rstrip": false,
|
1683 |
+
"single_word": false,
|
1684 |
+
"special": false
|
1685 |
+
}
|
1686 |
+
},
|
1687 |
+
"bos_token": "<s>",
|
1688 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}You are an expert radiology assistant tasked with interpreting a chest X-ray study. {% for message in messages %}{% if message[\"role\"] == \"user\" %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message[\"content\"] %}{% if item[\"type\"] == \"text\" %}{{ item[\"text\"] }}{% elif item[\"type\"] == \"image\" %}<image>{% endif %}{% endfor %}{% if message[\"role\"] == \"user\" %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}",
|
1689 |
+
"clean_up_tokenization_spaces": false,
|
1690 |
+
"eos_token": "</s>",
|
1691 |
+
"extra_special_tokens": {},
|
1692 |
+
"legacy": false,
|
1693 |
+
"model_max_length": 4096,
|
1694 |
+
"pad_token": "<unk>",
|
1695 |
+
"padding_side": "left",
|
1696 |
+
"sp_model_kwargs": {},
|
1697 |
+
"spaces_between_special_tokens": false,
|
1698 |
+
"tokenizer_class": "LlamaTokenizer",
|
1699 |
+
"unk_token": "<unk>",
|
1700 |
+
"use_default_system_prompt": false
|
1701 |
+
}
|