File size: 24,155 Bytes
43de88c 307e9e0 43de88c 2f425fc 43de88c 307e9e0 43de88c 2f425fc 307e9e0 43de88c 307e9e0 43de88c 307e9e0 43de88c 307e9e0 43de88c 2f425fc 43de88c 307e9e0 43de88c 2f425fc 43de88c 2f425fc 43de88c 307e9e0 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 307e9e0 70375cc 307e9e0 70375cc 307e9e0 70375cc 307e9e0 70375cc 307e9e0 43de88c 70375cc 307e9e0 43de88c 70375cc 43de88c 307e9e0 43de88c 307e9e0 2f425fc 43de88c 70375cc 307e9e0 43de88c 2f425fc 43de88c 307e9e0 43de88c 307e9e0 43de88c 2f425fc 70375cc 43de88c 307e9e0 43de88c 70375cc 307e9e0 43de88c 307e9e0 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 2f425fc 43de88c 307e9e0 43de88c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
import torch
import torch.nn.functional as F
import inspect
import numpy as np
from typing import Callable, List, Optional, Union
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor
from diffusers import AutoencoderKL, DiffusionPipeline
from diffusers.utils import (
deprecate,
is_accelerate_available,
is_accelerate_version,
logging,
)
from diffusers.configuration_utils import FrozenDict
from diffusers.schedulers import DDIMScheduler
from diffusers.utils.torch_utils import randn_tensor
from .models import MultiViewUNetModel
from .util import get_camera
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class MVDreamPipeline(DiffusionPipeline):
_optional_components = ["feature_extractor", "image_encoder"]
def __init__(
self,
vae: AutoencoderKL,
unet: MultiViewUNetModel,
tokenizer: CLIPTokenizer,
text_encoder: CLIPTextModel,
scheduler: DDIMScheduler,
# imagedream variant
feature_extractor: CLIPImageProcessor,
image_encoder: CLIPVisionModel,
requires_safety_checker: bool = False,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: # type: ignore
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " # type: ignore
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate(
"steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False
)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: # type: ignore
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate(
"clip_sample not set", "1.0.0", deprecation_message, standard_warn=False
)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
unet=unet,
scheduler=scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.register_to_config(requires_safety_checker=requires_safety_checker)
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding.
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding.
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
"""
self.vae.enable_tiling()
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
Note that offloading happens on a submodule basis. Memory savings are higher than with
`enable_model_cpu_offload`, but performance is lower.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
from accelerate import cpu_offload
else:
raise ImportError(
"`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher"
)
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
cpu_offload(cpu_offloaded_model, device)
def enable_model_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
"""
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError(
"`enable_model_offload` requires `accelerate v0.17.0` or higher."
)
device = torch.device(f"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu", silence_dtype_warnings=True)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
hook = None
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
_, hook = cpu_offload_with_hook(
cpu_offloaded_model, device, prev_module_hook=hook
)
# We'll offload the last model manually.
self.final_offload_hook = hook
@property
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance: bool,
negative_prompt=None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
"""
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(
f"`prompt` should be either a string or a list of strings, but got {type(prompt)}."
)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(
prompt, padding="longest", return_tensors="pt"
).input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if (
hasattr(self.text_encoder.config, "use_attention_mask")
and self.text_encoder.config.use_attention_mask
):
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(
bs_embed * num_images_per_prompt, seq_len, -1
)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if (
hasattr(self.text_encoder.config, "use_attention_mask")
and self.text_encoder.config.use_attention_mask
):
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(
dtype=self.text_encoder.dtype, device=device
)
negative_prompt_embeds = negative_prompt_embeds.repeat(
1, num_images_per_prompt, 1
)
negative_prompt_embeds = negative_prompt_embeds.view(
batch_size * num_images_per_prompt, seq_len, -1
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
def decode_latents(self, latents):
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
shape = (
batch_size,
num_channels_latents,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(
shape, generator=generator, device=device, dtype=dtype
)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def encode_image(self, image, device, num_images_per_prompt):
dtype = next(self.image_encoder.parameters()).dtype
if image.dtype == np.float32:
image = (image * 255).astype(np.uint8)
image = self.feature_extractor(image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=dtype)
image_embeds = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
return torch.zeros_like(image_embeds), image_embeds
def encode_image_latents(self, image, device, num_images_per_prompt):
dtype = next(self.image_encoder.parameters()).dtype
image = torch.from_numpy(image).unsqueeze(0).permute(0, 3, 1, 2).to(device=device) # [1, 3, H, W]
image = 2 * image - 1
image = F.interpolate(image, (256, 256), mode='bilinear', align_corners=False)
image = image.to(dtype=dtype)
posterior = self.vae.encode(image).latent_dist
latents = posterior.sample() * self.vae.config.scaling_factor # [B, C, H, W]
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
return torch.zeros_like(latents), latents
@torch.no_grad()
def __call__(
self,
prompt: str = "",
image: Optional[np.ndarray] = None,
height: int = 256,
width: int = 256,
num_inference_steps: int = 50,
guidance_scale: float = 7.0,
negative_prompt: str = "",
num_images_per_prompt: int = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "numpy", # pil, numpy, latents
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
num_frames: int = 4,
device=torch.device("cuda:0"),
):
self.unet = self.unet.to(device=device)
self.vae = self.vae.to(device=device)
self.text_encoder = self.text_encoder.to(device=device)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# imagedream variant
if image is not None:
assert isinstance(image, np.ndarray) and image.dtype == np.float32
self.image_encoder = self.image_encoder.to(device=device)
image_embeds_neg, image_embeds_pos = self.encode_image(image, device, num_images_per_prompt)
image_latents_neg, image_latents_pos = self.encode_image_latents(image, device, num_images_per_prompt)
_prompt_embeds = self._encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
) # type: ignore
prompt_embeds_neg, prompt_embeds_pos = _prompt_embeds.chunk(2)
# Prepare latent variables
actual_num_frames = num_frames if image is None else num_frames + 1
latents: torch.Tensor = self.prepare_latents(
actual_num_frames * num_images_per_prompt,
4,
height,
width,
prompt_embeds_pos.dtype,
device,
generator,
None,
)
if image is not None:
camera = get_camera(num_frames, elevation=5, extra_view=True).to(dtype=latents.dtype, device=device)
else:
camera = get_camera(num_frames, elevation=15, extra_view=False).to(dtype=latents.dtype, device=device)
camera = camera.repeat_interleave(num_images_per_prompt, dim=0)
# Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
multiplier = 2 if do_classifier_free_guidance else 1
latent_model_input = torch.cat([latents] * multiplier)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
unet_inputs = {
'x': latent_model_input,
'timesteps': torch.tensor([t] * actual_num_frames * multiplier, dtype=latent_model_input.dtype, device=device),
'context': torch.cat([prompt_embeds_neg] * actual_num_frames + [prompt_embeds_pos] * actual_num_frames),
'num_frames': actual_num_frames,
'camera': torch.cat([camera] * multiplier),
}
if image is not None:
unet_inputs['ip'] = torch.cat([image_embeds_neg] * actual_num_frames + [image_embeds_pos] * actual_num_frames)
unet_inputs['ip_img'] = torch.cat([image_latents_neg] + [image_latents_pos]) # no repeat
# predict the noise residual
noise_pred = self.unet.forward(**unet_inputs)
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents: torch.Tensor = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
)[0]
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents) # type: ignore
# Post-processing
if output_type == "latent":
image = latents
elif output_type == "pil":
image = self.decode_latents(latents)
image = self.numpy_to_pil(image)
else: # numpy
image = self.decode_latents(latents)
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
return image
|