kawaimasa commited on
Commit
c8c2540
·
verified ·
1 Parent(s): df29ca8

Upload 5 files

Browse files
FT_test_edm2/FT_test_edm2-000001.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ce916c21e2857f0d4fb8acfff4120a19aff6371fa29e149ad38f6eac0d0413a
3
+ size 6938043304
FT_test_edm2/FT_test_edm2-000002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efdf91f0d41b8ad04d717678731e951ac1e5728458739c911bbbeded6f8c905c
3
+ size 6938043304
FT_test_edm2/FT_test_edm2-000003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b80bccbb8d6bb5fb55d07621a33f0a2c89b2f57b097d4f7c17a0ac694d405078
3
+ size 6938043304
FT_test_edm2/lossweightMLP.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import numpy as np
4
+ from diffusers import DDPMScheduler
5
+ #changes_start
6
+ import transformers
7
+
8
+ def normalize(x: torch.Tensor, dim=None, eps=1e-4) -> torch.Tensor:
9
+ if dim is None:
10
+ dim = list(range(1, x.ndim))
11
+ norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32) # type: torch.Tensor
12
+ norm = torch.add(eps, norm, alpha=np.sqrt(norm.numel() / x.numel()))
13
+ return x / norm.to(x.dtype)
14
+
15
+ class FourierFeatureExtractor(torch.nn.Module):
16
+ def __init__(self, num_channels, bandwidth=1):
17
+ super().__init__()
18
+ self.register_buffer('freqs', 2 * np.pi * torch.randn(num_channels) * bandwidth)
19
+ self.register_buffer('phases', 2 * np.pi * torch.rand(num_channels))
20
+
21
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
22
+ y = x.to(torch.float32)
23
+ y = y.ger(self.freqs.to(torch.float32))
24
+ y = y + self.phases.to(torch.float32) # type: torch.Tensor
25
+ y = y.cos() * np.sqrt(2)
26
+ return y.to(x.dtype)
27
+
28
+ class NormalizedLinearLayer(torch.nn.Module):
29
+ def __init__(self, in_channels, out_channels, kernel):
30
+ super().__init__()
31
+ self.out_channels = out_channels
32
+ self.weight = torch.nn.Parameter(torch.randn(out_channels, in_channels, *kernel))
33
+
34
+ def forward(self, x: torch.Tensor, gain=1) -> torch.Tensor:
35
+ w = self.weight.to(torch.float32)
36
+ if self.training:
37
+ with torch.no_grad():
38
+ self.weight.copy_(normalize(w)) # forced weight normalization
39
+ w = normalize(w) # traditional weight normalization
40
+ w = w * (gain / np.sqrt(w[0].numel())) # type: torch.Tensor # magnitude-preserving scaling
41
+ w = w.to(x.dtype)
42
+ if w.ndim == 2:
43
+ return x @ w.t()
44
+ assert w.ndim == 4
45
+ return torch.nn.functional.conv2d(x, w, padding=(w.shape[-1]//2,))
46
+
47
+ class AdaptiveLossWeightMLP(nn.Module):
48
+ def __init__(
49
+ self,
50
+ noise_scheduler: DDPMScheduler,
51
+ logvar_channels=128,
52
+ lambda_weights: torch.Tensor = None,
53
+ ):
54
+ super().__init__()
55
+ self.alphas_cumprod = noise_scheduler.alphas_cumprod.cuda()
56
+ #self.a_bar_mean = noise_scheduler.alphas_cumprod.mean()
57
+ #self.a_bar_std = noise_scheduler.alphas_cumprod.std()
58
+ self.a_bar_mean = self.alphas_cumprod.mean()
59
+ self.a_bar_std = self.alphas_cumprod.std()
60
+ self.logvar_fourier = FourierFeatureExtractor(logvar_channels)
61
+ self.logvar_linear = NormalizedLinearLayer(logvar_channels, 1, kernel=[]) # kernel = []? (not in code given, added matching edm2)
62
+ self.lambda_weights = lambda_weights.cuda() if lambda_weights is not None else torch.ones(1000, device='cuda')
63
+ self.noise_scheduler = noise_scheduler
64
+
65
+ def _forward(self, timesteps: torch.Tensor):
66
+ #a_bar = self.noise_scheduler.alphas_cumprod[timesteps]
67
+ a_bar = self.alphas_cumprod[timesteps]
68
+ c_noise = a_bar.sub(self.a_bar_mean).div_(self.a_bar_std)
69
+ return self.logvar_linear(self.logvar_fourier(c_noise)).squeeze()
70
+
71
+ def forward(self, loss: torch.Tensor, timesteps):
72
+ adaptive_loss_weights = self._forward(timesteps)
73
+ loss_scaled = loss * (self.lambda_weights[timesteps] / torch.exp(adaptive_loss_weights)) # type: torch.Tensor
74
+ loss = loss_scaled + adaptive_loss_weights # type: torch.Tensor
75
+
76
+ return loss, loss_scaled
77
+
78
+ def create_weight_MLP(noise_scheduler, logvar_channels=128, lambda_weights=None):
79
+ print("creating weight MLP")
80
+ lossweightMLP = AdaptiveLossWeightMLP(noise_scheduler, logvar_channels, lambda_weights)
81
+ # MLP_optim = torch.optim.AdamW(lossweightMLP.parameters(), lr=1e-2, weight_decay=0)
82
+ MLP_optim =transformers.optimization.Adafactor(lossweightMLP.parameters(), lr=1e-2, scale_parameter=False, relative_step=False, warmup_init=False)
83
+ return lossweightMLP, MLP_optim
FT_test_edm2/sdxl_train.py ADDED
@@ -0,0 +1,980 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # training with captions
2
+
3
+ import argparse
4
+ import math
5
+ import os
6
+ from multiprocessing import Value
7
+ from typing import List
8
+ import toml
9
+
10
+ from tqdm import tqdm
11
+
12
+ import torch
13
+ from library.device_utils import init_ipex, clean_memory_on_device
14
+
15
+
16
+ init_ipex()
17
+
18
+ from accelerate.utils import set_seed
19
+ from diffusers import DDPMScheduler
20
+ from library import deepspeed_utils, sdxl_model_util
21
+
22
+ import library.train_util as train_util
23
+
24
+ from library.utils import setup_logging, add_logging_arguments
25
+
26
+ setup_logging()
27
+ import logging
28
+
29
+ logger = logging.getLogger(__name__)
30
+
31
+ import library.config_util as config_util
32
+ import library.sdxl_train_util as sdxl_train_util
33
+ from library.config_util import (
34
+ ConfigSanitizer,
35
+ BlueprintGenerator,
36
+ )
37
+ import library.custom_train_functions as custom_train_functions
38
+ from library.custom_train_functions import (
39
+ apply_snr_weight,
40
+ prepare_scheduler_for_custom_training,
41
+ scale_v_prediction_loss_like_noise_prediction,
42
+ add_v_prediction_like_loss,
43
+ apply_debiased_estimation,
44
+ apply_masked_loss,
45
+ )
46
+ from library.sdxl_original_unet import SdxlUNet2DConditionModel
47
+ #Changes for edm2 start
48
+ from lossweightMLP import create_weight_MLP
49
+ #end
50
+
51
+ UNET_NUM_BLOCKS_FOR_BLOCK_LR = 23
52
+
53
+
54
+ def get_block_params_to_optimize(unet: SdxlUNet2DConditionModel, block_lrs: List[float]) -> List[dict]:
55
+ block_params = [[] for _ in range(len(block_lrs))]
56
+
57
+ for i, (name, param) in enumerate(unet.named_parameters()):
58
+ if name.startswith("time_embed.") or name.startswith("label_emb."):
59
+ block_index = 0 # 0
60
+ elif name.startswith("input_blocks."): # 1-9
61
+ block_index = 1 + int(name.split(".")[1])
62
+ elif name.startswith("middle_block."): # 10-12
63
+ block_index = 10 + int(name.split(".")[1])
64
+ elif name.startswith("output_blocks."): # 13-21
65
+ block_index = 13 + int(name.split(".")[1])
66
+ elif name.startswith("out."): # 22
67
+ block_index = 22
68
+ else:
69
+ raise ValueError(f"unexpected parameter name: {name}")
70
+
71
+ block_params[block_index].append(param)
72
+
73
+ params_to_optimize = []
74
+ for i, params in enumerate(block_params):
75
+ if block_lrs[i] == 0: # 0のときは学習しない do not optimize when lr is 0
76
+ continue
77
+ params_to_optimize.append({"params": params, "lr": block_lrs[i]})
78
+
79
+ return params_to_optimize
80
+
81
+
82
+ def append_block_lr_to_logs(block_lrs, logs, lr_scheduler, optimizer_type):
83
+ names = []
84
+ block_index = 0
85
+ while block_index < UNET_NUM_BLOCKS_FOR_BLOCK_LR + 2:
86
+ if block_index < UNET_NUM_BLOCKS_FOR_BLOCK_LR:
87
+ if block_lrs[block_index] == 0:
88
+ block_index += 1
89
+ continue
90
+ names.append(f"block{block_index}")
91
+ elif block_index == UNET_NUM_BLOCKS_FOR_BLOCK_LR:
92
+ names.append("text_encoder1")
93
+ elif block_index == UNET_NUM_BLOCKS_FOR_BLOCK_LR + 1:
94
+ names.append("text_encoder2")
95
+
96
+ block_index += 1
97
+
98
+ train_util.append_lr_to_logs_with_names(logs, lr_scheduler, optimizer_type, names)
99
+
100
+
101
+ def train(args):
102
+ train_util.verify_training_args(args)
103
+ train_util.prepare_dataset_args(args, True)
104
+ sdxl_train_util.verify_sdxl_training_args(args)
105
+ deepspeed_utils.prepare_deepspeed_args(args)
106
+ setup_logging(args, reset=True)
107
+
108
+ assert (
109
+ not args.weighted_captions
110
+ ), "weighted_captions is not supported currently / weighted_captionsは現在サポートされていません"
111
+ assert (
112
+ not args.train_text_encoder or not args.cache_text_encoder_outputs
113
+ ), "cache_text_encoder_outputs is not supported when training text encoder / text encoderを学習するときはcache_text_encoder_outputsはサポートされていません"
114
+
115
+ if args.block_lr:
116
+ block_lrs = [float(lr) for lr in args.block_lr.split(",")]
117
+ assert (
118
+ len(block_lrs) == UNET_NUM_BLOCKS_FOR_BLOCK_LR
119
+ ), f"block_lr must have {UNET_NUM_BLOCKS_FOR_BLOCK_LR} values / block_lrは{UNET_NUM_BLOCKS_FOR_BLOCK_LR}個の値を指定してください"
120
+ else:
121
+ block_lrs = None
122
+
123
+ cache_latents = args.cache_latents
124
+ use_dreambooth_method = args.in_json is None
125
+
126
+ if args.seed is not None:
127
+ set_seed(args.seed) # 乱数系列を初期化する
128
+
129
+ tokenizer1, tokenizer2 = sdxl_train_util.load_tokenizers(args)
130
+
131
+ # データセットを準備する
132
+ if args.dataset_class is None:
133
+ blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, True, args.masked_loss, True))
134
+ if args.dataset_config is not None:
135
+ logger.info(f"Load dataset config from {args.dataset_config}")
136
+ user_config = config_util.load_user_config(args.dataset_config)
137
+ ignored = ["train_data_dir", "in_json"]
138
+ if any(getattr(args, attr) is not None for attr in ignored):
139
+ logger.warning(
140
+ "ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
141
+ ", ".join(ignored)
142
+ )
143
+ )
144
+ else:
145
+ if use_dreambooth_method:
146
+ logger.info("Using DreamBooth method.")
147
+ user_config = {
148
+ "datasets": [
149
+ {
150
+ "subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(
151
+ args.train_data_dir, args.reg_data_dir
152
+ )
153
+ }
154
+ ]
155
+ }
156
+ else:
157
+ logger.info("Training with captions.")
158
+ user_config = {
159
+ "datasets": [
160
+ {
161
+ "subsets": [
162
+ {
163
+ "image_dir": args.train_data_dir,
164
+ "metadata_file": args.in_json,
165
+ }
166
+ ]
167
+ }
168
+ ]
169
+ }
170
+
171
+ blueprint = blueprint_generator.generate(user_config, args, tokenizer=[tokenizer1, tokenizer2])
172
+ train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
173
+ else:
174
+ train_dataset_group = train_util.load_arbitrary_dataset(args, [tokenizer1, tokenizer2])
175
+
176
+ current_epoch = Value("i", 0)
177
+ current_step = Value("i", 0)
178
+ ds_for_collator = train_dataset_group if args.max_data_loader_n_workers == 0 else None
179
+ collator = train_util.collator_class(current_epoch, current_step, ds_for_collator)
180
+
181
+ train_dataset_group.verify_bucket_reso_steps(32)
182
+
183
+ if args.debug_dataset:
184
+ train_util.debug_dataset(train_dataset_group, True)
185
+ return
186
+ if len(train_dataset_group) == 0:
187
+ logger.error(
188
+ "No data found. Please verify the metadata file and train_data_dir option. / 画像がありません。メタデータおよびtrain_data_dirオプションを確認してください。"
189
+ )
190
+ return
191
+
192
+ if cache_latents:
193
+ assert (
194
+ train_dataset_group.is_latent_cacheable()
195
+ ), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
196
+
197
+ if args.cache_text_encoder_outputs:
198
+ assert (
199
+ train_dataset_group.is_text_encoder_output_cacheable()
200
+ ), "when caching text encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / text encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
201
+
202
+ # acceleratorを準備する
203
+ logger.info("prepare accelerator")
204
+ accelerator = train_util.prepare_accelerator(args)
205
+
206
+ # mixed precisionに対応した型を用意しておき適宜castする
207
+ weight_dtype, save_dtype = train_util.prepare_dtype(args)
208
+ vae_dtype = torch.float32 if args.no_half_vae else weight_dtype
209
+
210
+ # モデルを読み込む
211
+ (
212
+ load_stable_diffusion_format,
213
+ text_encoder1,
214
+ text_encoder2,
215
+ vae,
216
+ unet,
217
+ logit_scale,
218
+ ckpt_info,
219
+ ) = sdxl_train_util.load_target_model(args, accelerator, "sdxl", weight_dtype)
220
+ # logit_scale = logit_scale.to(accelerator.device, dtype=weight_dtype)
221
+
222
+ # verify load/save model formats
223
+ if load_stable_diffusion_format:
224
+ src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
225
+ src_diffusers_model_path = None
226
+ else:
227
+ src_stable_diffusion_ckpt = None
228
+ src_diffusers_model_path = args.pretrained_model_name_or_path
229
+
230
+ if args.save_model_as is None:
231
+ save_stable_diffusion_format = load_stable_diffusion_format
232
+ use_safetensors = args.use_safetensors
233
+ else:
234
+ save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors"
235
+ use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
236
+ # assert save_stable_diffusion_format, "save_model_as must be ckpt or safetensors / save_model_asはckptかsafetensorsである必要があります"
237
+
238
+ # Diffusers版のxformers使用フラグを設定する関数
239
+ def set_diffusers_xformers_flag(model, valid):
240
+ def fn_recursive_set_mem_eff(module: torch.nn.Module):
241
+ if hasattr(module, "set_use_memory_efficient_attention_xformers"):
242
+ module.set_use_memory_efficient_attention_xformers(valid)
243
+
244
+ for child in module.children():
245
+ fn_recursive_set_mem_eff(child)
246
+
247
+ fn_recursive_set_mem_eff(model)
248
+
249
+ # モデルに xformers とか memory efficient attention を組み込む
250
+ if args.diffusers_xformers:
251
+ # もうU-Netを独自にしたので���かないけどVAEのxformersは動くはず
252
+ accelerator.print("Use xformers by Diffusers")
253
+ # set_diffusers_xformers_flag(unet, True)
254
+ set_diffusers_xformers_flag(vae, True)
255
+ else:
256
+ # Windows版のxformersはfloatで学習できなかったりするのでxformersを使わない設定も可能にしておく必要がある
257
+ accelerator.print("Disable Diffusers' xformers")
258
+ train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers, args.sdpa)
259
+ if torch.__version__ >= "2.0.0": # PyTorch 2.0.0 以上対応のxformersなら以下が使える
260
+ vae.set_use_memory_efficient_attention_xformers(args.xformers)
261
+
262
+ # 学習を準備する
263
+ if cache_latents:
264
+ vae.to(accelerator.device, dtype=vae_dtype)
265
+ vae.requires_grad_(False)
266
+ vae.eval()
267
+ with torch.no_grad():
268
+ train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
269
+ vae.to("cpu")
270
+ clean_memory_on_device(accelerator.device)
271
+
272
+ accelerator.wait_for_everyone()
273
+
274
+ # 学習を準備する:モデルを適切な状態にする
275
+ if args.gradient_checkpointing:
276
+ unet.enable_gradient_checkpointing()
277
+ train_unet = args.learning_rate != 0
278
+ train_text_encoder1 = False
279
+ train_text_encoder2 = False
280
+
281
+ if args.train_text_encoder:
282
+ # TODO each option for two text encoders?
283
+ accelerator.print("enable text encoder training")
284
+ if args.gradient_checkpointing:
285
+ text_encoder1.gradient_checkpointing_enable()
286
+ text_encoder2.gradient_checkpointing_enable()
287
+ lr_te1 = args.learning_rate_te1 if args.learning_rate_te1 is not None else args.learning_rate # 0 means not train
288
+ lr_te2 = args.learning_rate_te2 if args.learning_rate_te2 is not None else args.learning_rate # 0 means not train
289
+ train_text_encoder1 = lr_te1 != 0
290
+ train_text_encoder2 = lr_te2 != 0
291
+
292
+ # caching one text encoder output is not supported
293
+ if not train_text_encoder1:
294
+ text_encoder1.to(weight_dtype)
295
+ if not train_text_encoder2:
296
+ text_encoder2.to(weight_dtype)
297
+ text_encoder1.requires_grad_(train_text_encoder1)
298
+ text_encoder2.requires_grad_(train_text_encoder2)
299
+ text_encoder1.train(train_text_encoder1)
300
+ text_encoder2.train(train_text_encoder2)
301
+ else:
302
+ text_encoder1.to(weight_dtype)
303
+ text_encoder2.to(weight_dtype)
304
+ text_encoder1.requires_grad_(False)
305
+ text_encoder2.requires_grad_(False)
306
+ text_encoder1.eval()
307
+ text_encoder2.eval()
308
+
309
+ # TextEncoderの出力をキャッシュする
310
+ if args.cache_text_encoder_outputs:
311
+ # Text Encodes are eval and no grad
312
+ with torch.no_grad(), accelerator.autocast():
313
+ train_dataset_group.cache_text_encoder_outputs(
314
+ (tokenizer1, tokenizer2),
315
+ (text_encoder1, text_encoder2),
316
+ accelerator.device,
317
+ None,
318
+ args.cache_text_encoder_outputs_to_disk,
319
+ accelerator.is_main_process,
320
+ )
321
+ accelerator.wait_for_everyone()
322
+
323
+ if not cache_latents:
324
+ vae.requires_grad_(False)
325
+ vae.eval()
326
+ vae.to(accelerator.device, dtype=vae_dtype)
327
+
328
+ unet.requires_grad_(train_unet)
329
+ if not train_unet:
330
+ unet.to(accelerator.device, dtype=weight_dtype) # because of unet is not prepared
331
+
332
+ training_models = []
333
+ params_to_optimize = []
334
+ if train_unet:
335
+ training_models.append(unet)
336
+ if block_lrs is None:
337
+ params_to_optimize.append({"params": list(unet.parameters()), "lr": args.learning_rate})
338
+ else:
339
+ params_to_optimize.extend(get_block_params_to_optimize(unet, block_lrs))
340
+
341
+ if train_text_encoder1:
342
+ training_models.append(text_encoder1)
343
+ params_to_optimize.append({"params": list(text_encoder1.parameters()), "lr": args.learning_rate_te1 or args.learning_rate})
344
+ if train_text_encoder2:
345
+ training_models.append(text_encoder2)
346
+ params_to_optimize.append({"params": list(text_encoder2.parameters()), "lr": args.learning_rate_te2 or args.learning_rate})
347
+
348
+ # calculate number of trainable parameters
349
+ n_params = 0
350
+ for group in params_to_optimize:
351
+ for p in group["params"]:
352
+ n_params += p.numel()
353
+
354
+ accelerator.print(f"train unet: {train_unet}, text_encoder1: {train_text_encoder1}, text_encoder2: {train_text_encoder2}")
355
+ accelerator.print(f"number of models: {len(training_models)}")
356
+ accelerator.print(f"number of trainable parameters: {n_params}")
357
+
358
+ # 学習に必要なクラスを準備する
359
+ accelerator.print("prepare optimizer, data loader etc.")
360
+
361
+ if args.fused_optimizer_groups:
362
+ # fused backward pass: https://pytorch.org/tutorials/intermediate/optimizer_step_in_backward_tutorial.html
363
+ # Instead of creating an optimizer for all parameters as in the tutorial, we create an optimizer for each group of parameters.
364
+ # This balances memory usage and management complexity.
365
+
366
+ # calculate total number of parameters
367
+ n_total_params = sum(len(params["params"]) for params in params_to_optimize)
368
+ params_per_group = math.ceil(n_total_params / args.fused_optimizer_groups)
369
+
370
+ # split params into groups, keeping the learning rate the same for all params in a group
371
+ # this will increase the number of groups if the learning rate is different for different params (e.g. U-Net and text encoders)
372
+ grouped_params = []
373
+ param_group = []
374
+ param_group_lr = -1
375
+ for group in params_to_optimize:
376
+ lr = group["lr"]
377
+ for p in group["params"]:
378
+ # if the learning rate is different for different params, start a new group
379
+ if lr != param_group_lr:
380
+ if param_group:
381
+ grouped_params.append({"params": param_group, "lr": param_group_lr})
382
+ param_group = []
383
+ param_group_lr = lr
384
+
385
+ param_group.append(p)
386
+
387
+ # if the group has enough parameters, start a new group
388
+ if len(param_group) == params_per_group:
389
+ grouped_params.append({"params": param_group, "lr": param_group_lr})
390
+ param_group = []
391
+ param_group_lr = -1
392
+
393
+ if param_group:
394
+ grouped_params.append({"params": param_group, "lr": param_group_lr})
395
+
396
+ # prepare optimizers for each group
397
+ optimizers = []
398
+ for group in grouped_params:
399
+ _, _, optimizer = train_util.get_optimizer(args, trainable_params=[group])
400
+ optimizers.append(optimizer)
401
+ optimizer = optimizers[0] # avoid error in the following code
402
+
403
+ logger.info(f"using {len(optimizers)} optimizers for fused optimizer groups")
404
+
405
+ else:
406
+ _, _, optimizer = train_util.get_optimizer(args, trainable_params=params_to_optimize)
407
+
408
+ # dataloaderを準備する
409
+ # DataLoaderのプロセス数:0 は persistent_workers が使えないので注意
410
+ n_workers = min(args.max_data_loader_n_workers, os.cpu_count()) # cpu_count or max_data_loader_n_workers
411
+ train_dataloader = torch.utils.data.DataLoader(
412
+ train_dataset_group,
413
+ batch_size=1,
414
+ shuffle=True,
415
+ collate_fn=collator,
416
+ num_workers=n_workers,
417
+ persistent_workers=args.persistent_data_loader_workers,
418
+ )
419
+
420
+ # 学習ステップ数を計算する
421
+ if args.max_train_epochs is not None:
422
+ args.max_train_steps = args.max_train_epochs * math.ceil(
423
+ len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
424
+ )
425
+ accelerator.print(
426
+ f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}"
427
+ )
428
+
429
+ # データセット側にも学習ステップを送信
430
+ train_dataset_group.set_max_train_steps(args.max_train_steps)
431
+
432
+ # lr schedulerを用意する
433
+ if args.fused_optimizer_groups:
434
+ # prepare lr schedulers for each optimizer
435
+ lr_schedulers = [train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes) for optimizer in optimizers]
436
+ lr_scheduler = lr_schedulers[0] # avoid error in the following code
437
+ else:
438
+ lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
439
+
440
+ # 実験的機能:勾配も含めたfp16/bf16学習を行う モデル全体をfp16/bf16にする
441
+ if args.full_fp16:
442
+ assert (
443
+ args.mixed_precision == "fp16"
444
+ ), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
445
+ accelerator.print("enable full fp16 training.")
446
+ unet.to(weight_dtype)
447
+ text_encoder1.to(weight_dtype)
448
+ text_encoder2.to(weight_dtype)
449
+ elif args.full_bf16:
450
+ assert (
451
+ args.mixed_precision == "bf16"
452
+ ), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
453
+ accelerator.print("enable full bf16 training.")
454
+ unet.to(weight_dtype)
455
+ text_encoder1.to(weight_dtype)
456
+ text_encoder2.to(weight_dtype)
457
+
458
+ # freeze last layer and final_layer_norm in te1 since we use the output of the penultimate layer
459
+ if train_text_encoder1:
460
+ text_encoder1.text_model.encoder.layers[-1].requires_grad_(False)
461
+ text_encoder1.text_model.final_layer_norm.requires_grad_(False)
462
+
463
+ if args.deepspeed:
464
+ ds_model = deepspeed_utils.prepare_deepspeed_model(
465
+ args,
466
+ unet=unet if train_unet else None,
467
+ text_encoder1=text_encoder1 if train_text_encoder1 else None,
468
+ text_encoder2=text_encoder2 if train_text_encoder2 else None,
469
+ )
470
+ # most of ZeRO stage uses optimizer partitioning, so we have to prepare optimizer and ds_model at the same time. # pull/1139#issuecomment-1986790007
471
+ ds_model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
472
+ ds_model, optimizer, train_dataloader, lr_scheduler
473
+ )
474
+ training_models = [ds_model]
475
+
476
+ else:
477
+ # acceleratorがなんかよろしくやってくれるらしい
478
+ if train_unet:
479
+ unet = accelerator.prepare(unet)
480
+ if train_text_encoder1:
481
+ text_encoder1 = accelerator.prepare(text_encoder1)
482
+ if train_text_encoder2:
483
+ text_encoder2 = accelerator.prepare(text_encoder2)
484
+ optimizer, train_dataloader, lr_scheduler = accelerator.prepare(optimizer, train_dataloader, lr_scheduler)
485
+
486
+ # TextEncoderの出力をキャッシュするときにはCPUへ移動する
487
+ if args.cache_text_encoder_outputs:
488
+ # move Text Encoders for sampling images. Text Encoder doesn't work on CPU with fp16
489
+ text_encoder1.to("cpu", dtype=torch.float32)
490
+ text_encoder2.to("cpu", dtype=torch.float32)
491
+ clean_memory_on_device(accelerator.device)
492
+ else:
493
+ # make sure Text Encoders are on GPU
494
+ text_encoder1.to(accelerator.device)
495
+ text_encoder2.to(accelerator.device)
496
+
497
+ # 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
498
+ if args.full_fp16:
499
+ # During deepseed training, accelerate not handles fp16/bf16|mixed precision directly via scaler. Let deepspeed engine do.
500
+ # -> But we think it's ok to patch accelerator even if deepspeed is enabled.
501
+ train_util.patch_accelerator_for_fp16_training(accelerator)
502
+
503
+ # resumeする
504
+ train_util.resume_from_local_or_hf_if_specified(accelerator, args)
505
+
506
+ if args.fused_backward_pass:
507
+ # use fused optimizer for backward pass: other optimizers will be supported in the future
508
+ import library.adafactor_fused
509
+
510
+ library.adafactor_fused.patch_adafactor_fused(optimizer)
511
+ for param_group in optimizer.param_groups:
512
+ for parameter in param_group["params"]:
513
+ if parameter.requires_grad:
514
+
515
+ def __grad_hook(tensor: torch.Tensor, param_group=param_group):
516
+ if accelerator.sync_gradients and args.max_grad_norm != 0.0:
517
+ accelerator.clip_grad_norm_(tensor, args.max_grad_norm)
518
+ optimizer.step_param(tensor, param_group)
519
+ tensor.grad = None
520
+
521
+ parameter.register_post_accumulate_grad_hook(__grad_hook)
522
+
523
+ elif args.fused_optimizer_groups:
524
+ # prepare for additional optimizers and lr schedulers
525
+ for i in range(1, len(optimizers)):
526
+ optimizers[i] = accelerator.prepare(optimizers[i])
527
+ lr_schedulers[i] = accelerator.prepare(lr_schedulers[i])
528
+
529
+ # counters are used to determine when to step the optimizer
530
+ global optimizer_hooked_count
531
+ global num_parameters_per_group
532
+ global parameter_optimizer_map
533
+
534
+ optimizer_hooked_count = {}
535
+ num_parameters_per_group = [0] * len(optimizers)
536
+ parameter_optimizer_map = {}
537
+
538
+ for opt_idx, optimizer in enumerate(optimizers):
539
+ for param_group in optimizer.param_groups:
540
+ for parameter in param_group["params"]:
541
+ if parameter.requires_grad:
542
+
543
+ def optimizer_hook(parameter: torch.Tensor):
544
+ if accelerator.sync_gradients and args.max_grad_norm != 0.0:
545
+ accelerator.clip_grad_norm_(parameter, args.max_grad_norm)
546
+
547
+ i = parameter_optimizer_map[parameter]
548
+ optimizer_hooked_count[i] += 1
549
+ if optimizer_hooked_count[i] == num_parameters_per_group[i]:
550
+ optimizers[i].step()
551
+ optimizers[i].zero_grad(set_to_none=True)
552
+
553
+ parameter.register_post_accumulate_grad_hook(optimizer_hook)
554
+ parameter_optimizer_map[parameter] = opt_idx
555
+ num_parameters_per_group[opt_idx] += 1
556
+
557
+ # epoch数を計算する
558
+ num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
559
+ num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
560
+ if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
561
+ args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
562
+
563
+ # 学習する
564
+ # total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
565
+ accelerator.print("running training / 学習開始")
566
+ accelerator.print(f" num examples / サンプル数: {train_dataset_group.num_train_images}")
567
+ accelerator.print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
568
+ accelerator.print(f" num epochs / epoch数: {num_train_epochs}")
569
+ accelerator.print(
570
+ f" batch size per device / バッチサイズ: {', '.join([str(d.batch_size) for d in train_dataset_group.datasets])}"
571
+ )
572
+ # accelerator.print(
573
+ # f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}"
574
+ # )
575
+ accelerator.print(f" gradient accumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
576
+ accelerator.print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
577
+
578
+ progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
579
+ global_step = 0
580
+
581
+ noise_scheduler = DDPMScheduler(
582
+ beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
583
+ )
584
+ # prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
585
+
586
+ if args.zero_terminal_snr:
587
+ custom_train_functions.fix_noise_scheduler_betas_for_zero_terminal_snr(noise_scheduler)
588
+
589
+ prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
590
+
591
+
592
+ if accelerator.is_main_process:
593
+ init_kwargs = {}
594
+ if args.wandb_run_name:
595
+ init_kwargs["wandb"] = {"name": args.wandb_run_name}
596
+ if args.log_tracker_config is not None:
597
+ init_kwargs = toml.load(args.log_tracker_config)
598
+ accelerator.init_trackers(
599
+ "finetuning" if args.log_tracker_name is None else args.log_tracker_name,
600
+ config=train_util.get_sanitized_config_or_none(args),
601
+ init_kwargs=init_kwargs,
602
+ )
603
+
604
+ # For --sample_at_first
605
+ sdxl_train_util.sample_images(
606
+ accelerator, args, 0, global_step, accelerator.device, vae, [tokenizer1, tokenizer2], [text_encoder1, text_encoder2], unet
607
+ )
608
+ #Changes for edm2 start
609
+ lossweightMLP, MLP_optim = create_weight_MLP(noise_scheduler)
610
+ lossweightMLP, MLP_optim = accelerator.prepare(lossweightMLP, MLP_optim)
611
+ #end
612
+
613
+ loss_recorder = train_util.LossRecorder()
614
+ for epoch in range(num_train_epochs):
615
+ accelerator.print(f"\nepoch {epoch+1}/{num_train_epochs}")
616
+ current_epoch.value = epoch + 1
617
+
618
+ for m in training_models:
619
+ m.train()
620
+
621
+ for step, batch in enumerate(train_dataloader):
622
+ current_step.value = global_step
623
+
624
+ if args.fused_optimizer_groups:
625
+ optimizer_hooked_count = {i: 0 for i in range(len(optimizers))} # reset counter for each step
626
+ #Changes for edm2 start
627
+ with accelerator.accumulate(*training_models, lossweightMLP):
628
+ #end
629
+ if "latents" in batch and batch["latents"] is not None:
630
+ latents = batch["latents"].to(accelerator.device).to(dtype=weight_dtype)
631
+ else:
632
+ with torch.no_grad():
633
+ # latentに変換
634
+ latents = vae.encode(batch["images"].to(vae_dtype)).latent_dist.sample().to(weight_dtype)
635
+
636
+ # NaNが含まれていれば警告を表示し0に置き換える
637
+ if torch.any(torch.isnan(latents)):
638
+ accelerator.print("NaN found in latents, replacing with zeros")
639
+ latents = torch.nan_to_num(latents, 0, out=latents)
640
+ latents = latents * sdxl_model_util.VAE_SCALE_FACTOR
641
+
642
+ if "text_encoder_outputs1_list" not in batch or batch["text_encoder_outputs1_list"] is None:
643
+ input_ids1 = batch["input_ids"]
644
+ input_ids2 = batch["input_ids2"]
645
+ with torch.set_grad_enabled(args.train_text_encoder):
646
+ # Get the text embedding for conditioning
647
+ # TODO support weighted captions
648
+ # if args.weighted_captions:
649
+ # encoder_hidden_states = get_weighted_text_embeddings(
650
+ # tokenizer,
651
+ # text_encoder,
652
+ # batch["captions"],
653
+ # accelerator.device,
654
+ # args.max_token_length // 75 if args.max_token_length else 1,
655
+ # clip_skip=args.clip_skip,
656
+ # )
657
+ # else:
658
+ input_ids1 = input_ids1.to(accelerator.device)
659
+ input_ids2 = input_ids2.to(accelerator.device)
660
+ # unwrap_model is fine for models not wrapped by accelerator
661
+ encoder_hidden_states1, encoder_hidden_states2, pool2 = train_util.get_hidden_states_sdxl(
662
+ args.max_token_length,
663
+ input_ids1,
664
+ input_ids2,
665
+ tokenizer1,
666
+ tokenizer2,
667
+ text_encoder1,
668
+ text_encoder2,
669
+ None if not args.full_fp16 else weight_dtype,
670
+ accelerator=accelerator,
671
+ )
672
+ else:
673
+ encoder_hidden_states1 = batch["text_encoder_outputs1_list"].to(accelerator.device).to(weight_dtype)
674
+ encoder_hidden_states2 = batch["text_encoder_outputs2_list"].to(accelerator.device).to(weight_dtype)
675
+ pool2 = batch["text_encoder_pool2_list"].to(accelerator.device).to(weight_dtype)
676
+
677
+ # # verify that the text encoder outputs are correct
678
+ # ehs1, ehs2, p2 = train_util.get_hidden_states_sdxl(
679
+ # args.max_token_length,
680
+ # batch["input_ids"].to(text_encoder1.device),
681
+ # batch["input_ids2"].to(text_encoder1.device),
682
+ # tokenizer1,
683
+ # tokenizer2,
684
+ # text_encoder1,
685
+ # text_encoder2,
686
+ # None if not args.full_fp16 else weight_dtype,
687
+ # )
688
+ # b_size = encoder_hidden_states1.shape[0]
689
+ # assert ((encoder_hidden_states1.to("cpu") - ehs1.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
690
+ # assert ((encoder_hidden_states2.to("cpu") - ehs2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
691
+ # assert ((pool2.to("cpu") - p2.to(dtype=weight_dtype)).abs().max() > 1e-2).sum() <= b_size * 2
692
+ # logger.info("text encoder outputs verified")
693
+
694
+ # get size embeddings
695
+ orig_size = batch["original_sizes_hw"]
696
+ crop_size = batch["crop_top_lefts"]
697
+ target_size = batch["target_sizes_hw"]
698
+ embs = sdxl_train_util.get_size_embeddings(orig_size, crop_size, target_size, accelerator.device).to(weight_dtype)
699
+
700
+ # concat embeddings
701
+ vector_embedding = torch.cat([pool2, embs], dim=1).to(weight_dtype)
702
+ text_embedding = torch.cat([encoder_hidden_states1, encoder_hidden_states2], dim=2).to(weight_dtype)
703
+
704
+ # Sample noise, sample a random timestep for each image, and add noise to the latents,
705
+ # with noise offset and/or multires noise if specified
706
+ noise, noisy_latents, timesteps, huber_c = train_util.get_noise_noisy_latents_and_timesteps(
707
+ args, noise_scheduler, latents
708
+ )
709
+
710
+ noisy_latents = noisy_latents.to(weight_dtype) # TODO check why noisy_latents is not weight_dtype
711
+
712
+ # Predict the noise residual
713
+ with accelerator.autocast():
714
+ noise_pred = unet(noisy_latents, timesteps, text_embedding, vector_embedding)
715
+
716
+ if args.v_parameterization:
717
+ # v-parameterization training
718
+ target = noise_scheduler.get_velocity(latents, noise, timesteps)
719
+ else:
720
+ target = noise
721
+
722
+ if (
723
+ args.min_snr_gamma
724
+ or args.scale_v_pred_loss_like_noise_pred
725
+ or args.v_pred_like_loss
726
+ or args.debiased_estimation_loss
727
+ or args.masked_loss
728
+ ):
729
+ # do not mean over batch dimension for snr weight or scale v-pred loss
730
+ loss = train_util.conditional_loss(
731
+ noise_pred.float(), target.float(), reduction="none", loss_type=args.loss_type, huber_c=huber_c
732
+ )
733
+ if args.masked_loss or ("alpha_masks" in batch and batch["alpha_masks"] is not None):
734
+ loss = apply_masked_loss(loss, batch)
735
+ loss = loss.mean([1, 2, 3])
736
+
737
+ if args.min_snr_gamma:
738
+ loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma, args.v_parameterization)
739
+ if args.scale_v_pred_loss_like_noise_pred:
740
+ loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
741
+ if args.v_pred_like_loss:
742
+ loss = add_v_prediction_like_loss(loss, timesteps, noise_scheduler, args.v_pred_like_loss)
743
+ if args.debiased_estimation_loss:
744
+ loss = apply_debiased_estimation(loss, timesteps, noise_scheduler, args.v_parameterization)
745
+ #Changes for edm2 start
746
+ loss, loss_scaled = lossweightMLP(loss, timesteps)
747
+ loss_scaled = loss_scaled.mean()
748
+ #end
749
+ loss = loss.mean() # mean over batch dimension
750
+ else:
751
+ loss = train_util.conditional_loss(
752
+ noise_pred.float(), target.float(), reduction="mean", loss_type=args.loss_type, huber_c=huber_c
753
+ )
754
+
755
+ #Changes for edm2 start
756
+ loss, loss_scaled = lossweightMLP(loss, timesteps)
757
+ loss = loss.mean()
758
+ loss_scaled = loss_scaled.mean()
759
+ #end
760
+
761
+ accelerator.backward(loss)
762
+
763
+ if not (args.fused_backward_pass or args.fused_optimizer_groups):
764
+ if accelerator.sync_gradients and args.max_grad_norm != 0.0:
765
+ params_to_clip = []
766
+ for m in training_models:
767
+ params_to_clip.extend(m.parameters())
768
+ accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
769
+
770
+ optimizer.step()
771
+ #Changes for edm2 start
772
+ MLP_optim.step()
773
+ #end
774
+
775
+ lr_scheduler.step()
776
+ optimizer.zero_grad(set_to_none=True)
777
+ #Changes for edm2 start
778
+ MLP_optim.zero_grad(set_to_none=True)
779
+ #end
780
+ else:
781
+ # optimizer.step() and optimizer.zero_grad() are called in the optimizer hook
782
+ lr_scheduler.step()
783
+ if args.fused_optimizer_groups:
784
+ for i in range(1, len(optimizers)):
785
+ lr_schedulers[i].step()
786
+
787
+ # Checks if the accelerator has performed an optimization step behind the scenes
788
+ if accelerator.sync_gradients:
789
+ progress_bar.update(1)
790
+ global_step += 1
791
+
792
+ sdxl_train_util.sample_images(
793
+ accelerator,
794
+ args,
795
+ None,
796
+ global_step,
797
+ accelerator.device,
798
+ vae,
799
+ [tokenizer1, tokenizer2],
800
+ [text_encoder1, text_encoder2],
801
+ unet,
802
+ )
803
+
804
+ # 指定ステップごとにモデルを保存
805
+ if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
806
+ accelerator.wait_for_everyone()
807
+ if accelerator.is_main_process:
808
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
809
+ sdxl_train_util.save_sd_model_on_epoch_end_or_stepwise(
810
+ args,
811
+ False,
812
+ accelerator,
813
+ src_path,
814
+ save_stable_diffusion_format,
815
+ use_safetensors,
816
+ save_dtype,
817
+ epoch,
818
+ num_train_epochs,
819
+ global_step,
820
+ accelerator.unwrap_model(text_encoder1),
821
+ accelerator.unwrap_model(text_encoder2),
822
+ accelerator.unwrap_model(unet),
823
+ vae,
824
+ logit_scale,
825
+ ckpt_info,
826
+ )
827
+
828
+ current_loss = loss.detach().item() # 平均なのでbatch sizeは関係ないはず
829
+ # current_loss = loss_scaled.detach().item()
830
+ if args.logging_dir is not None:
831
+ logs = {"loss": current_loss}
832
+ if block_lrs is None:
833
+ train_util.append_lr_to_logs(logs, lr_scheduler, args.optimizer_type, including_unet=train_unet)
834
+ else:
835
+ append_block_lr_to_logs(block_lrs, logs, lr_scheduler, args.optimizer_type) # U-Net is included in block_lrs
836
+
837
+ accelerator.log(logs, step=global_step)
838
+
839
+ loss_recorder.add(epoch=epoch, step=step, loss=current_loss)
840
+ avr_loss: float = loss_recorder.moving_average
841
+ logs = {"avr_loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
842
+ progress_bar.set_postfix(**logs)
843
+
844
+ if global_step >= args.max_train_steps:
845
+ break
846
+
847
+ if args.logging_dir is not None:
848
+ logs = {"loss/epoch": loss_recorder.moving_average}
849
+ accelerator.log(logs, step=epoch + 1)
850
+
851
+ accelerator.wait_for_everyone()
852
+
853
+ if args.save_every_n_epochs is not None:
854
+ if accelerator.is_main_process:
855
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
856
+ sdxl_train_util.save_sd_model_on_epoch_end_or_stepwise(
857
+ args,
858
+ True,
859
+ accelerator,
860
+ src_path,
861
+ save_stable_diffusion_format,
862
+ use_safetensors,
863
+ save_dtype,
864
+ epoch,
865
+ num_train_epochs,
866
+ global_step,
867
+ accelerator.unwrap_model(text_encoder1),
868
+ accelerator.unwrap_model(text_encoder2),
869
+ accelerator.unwrap_model(unet),
870
+ vae,
871
+ logit_scale,
872
+ ckpt_info,
873
+ )
874
+
875
+ sdxl_train_util.sample_images(
876
+ accelerator,
877
+ args,
878
+ epoch + 1,
879
+ global_step,
880
+ accelerator.device,
881
+ vae,
882
+ [tokenizer1, tokenizer2],
883
+ [text_encoder1, text_encoder2],
884
+ unet,
885
+ )
886
+
887
+ is_main_process = accelerator.is_main_process
888
+ # if is_main_process:
889
+ unet = accelerator.unwrap_model(unet)
890
+ text_encoder1 = accelerator.unwrap_model(text_encoder1)
891
+ text_encoder2 = accelerator.unwrap_model(text_encoder2)
892
+
893
+ accelerator.end_training()
894
+
895
+ if args.save_state or args.save_state_on_train_end:
896
+ train_util.save_state_on_train_end(args, accelerator)
897
+
898
+ del accelerator # この後メモリを使うのでこれは消す
899
+
900
+ if is_main_process:
901
+ src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
902
+ sdxl_train_util.save_sd_model_on_train_end(
903
+ args,
904
+ src_path,
905
+ save_stable_diffusion_format,
906
+ use_safetensors,
907
+ save_dtype,
908
+ epoch,
909
+ global_step,
910
+ text_encoder1,
911
+ text_encoder2,
912
+ unet,
913
+ vae,
914
+ logit_scale,
915
+ ckpt_info,
916
+ )
917
+ logger.info("model saved.")
918
+
919
+
920
+ def setup_parser() -> argparse.ArgumentParser:
921
+ parser = argparse.ArgumentParser()
922
+
923
+ add_logging_arguments(parser)
924
+ train_util.add_sd_models_arguments(parser)
925
+ train_util.add_dataset_arguments(parser, True, True, True)
926
+ train_util.add_training_arguments(parser, False)
927
+ train_util.add_masked_loss_arguments(parser)
928
+ deepspeed_utils.add_deepspeed_arguments(parser)
929
+ train_util.add_sd_saving_arguments(parser)
930
+ train_util.add_optimizer_arguments(parser)
931
+ config_util.add_config_arguments(parser)
932
+ custom_train_functions.add_custom_train_arguments(parser)
933
+ sdxl_train_util.add_sdxl_training_arguments(parser)
934
+
935
+ parser.add_argument(
936
+ "--learning_rate_te1",
937
+ type=float,
938
+ default=None,
939
+ help="learning rate for text encoder 1 (ViT-L) / text encoder 1 (ViT-L)の学習率",
940
+ )
941
+ parser.add_argument(
942
+ "--learning_rate_te2",
943
+ type=float,
944
+ default=None,
945
+ help="learning rate for text encoder 2 (BiG-G) / text encoder 2 (BiG-G)の学習率",
946
+ )
947
+
948
+ parser.add_argument(
949
+ "--diffusers_xformers", action="store_true", help="use xformers by diffusers / Diffusersでxformersを使用する"
950
+ )
951
+ parser.add_argument("--train_text_encoder", action="store_true", help="train text encoder / text encoderも学習する")
952
+ parser.add_argument(
953
+ "--no_half_vae",
954
+ action="store_true",
955
+ help="do not use fp16/bf16 VAE in mixed precision (use float VAE) / mixed precisionでも fp16/bf16 VAEを使わずfloat VAEを使う",
956
+ )
957
+ parser.add_argument(
958
+ "--block_lr",
959
+ type=str,
960
+ default=None,
961
+ help=f"learning rates for each block of U-Net, comma-separated, {UNET_NUM_BLOCKS_FOR_BLOCK_LR} values / "
962
+ + f"U-Netの各ブロックの学習率、カンマ区切り、{UNET_NUM_BLOCKS_FOR_BLOCK_LR}個の値",
963
+ )
964
+ parser.add_argument(
965
+ "--fused_optimizer_groups",
966
+ type=int,
967
+ default=None,
968
+ help="number of optimizers for fused backward pass and optimizer step / fused backward passとoptimizer stepのためのoptimizer数",
969
+ )
970
+ return parser
971
+
972
+
973
+ if __name__ == "__main__":
974
+ parser = setup_parser()
975
+
976
+ args = parser.parse_args()
977
+ train_util.verify_command_line_training_args(args)
978
+ args = train_util.read_config_from_file(args, parser)
979
+
980
+ train(args)