kaylaisya commited on
Commit
a2e9b7d
1 Parent(s): 9c1b232

Add SetFit ABSA model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: pelayanan lambat pelayan kurang:pelayanan lambat pelayan kurang ajar dan tidak
13
+ sopan terlalu banyak ngerumpi ngobrol sesama pelayan akhirnya kerjaan tidak pokus
14
+ dan salah kasih pesanan sudah pelayan tidak bagus pelayanya kurang ajar
15
+ - text: batu bandung dengan tempat yang bagus &:Restoran cepat saji 24 jam di buah
16
+ batu bandung dengan tempat yang bagus & nyaman, pelayanan yang baik, dan pelayanan
17
+ yang cepat. Di sini untuk sarapan dan menghabiskan sekitar 40k hingga 50k per
18
+ orang. Saya ingin pergi ke sana lagi lain kali.
19
+ - text: kentang gorengnya. rasanya sangat enak berbeda:Pengalaman luar biasa makan
20
+ di sini. Tidak hanya makanannya saja yang luar biasa. tempatnya sangat nyaman
21
+ untuk berkumpul bersama teman dan keluarga. Jangan lupa pesan kentang gorengnya.
22
+ rasanya sangat enak berbeda dengan kentang goreng di tempat lain
23
+ - text: Pelayanannya bagus dan makanannya:Pelayanannya bagus dan makanannya tidak
24
+ membosankan😊😊 …
25
+ - text: luas. Untuk rasa seperti MCd biasa:Tempat makannya nyaman, lumayan besar,
26
+ pegawainya ramah. Tempat parkirnya sungguh luas. Untuk rasa seperti MCd biasa,
27
+ enak dan cukup enak. Waktu penyajiannya cukup cepat Menyukainya.
28
+ pipeline_tag: text-classification
29
+ inference: false
30
+ ---
31
+
32
+ # SetFit Polarity Model
33
+
34
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
35
+
36
+ The model has been trained using an efficient few-shot learning technique that involves:
37
+
38
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
39
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
40
+
41
+ This model was trained within the context of a larger system for ABSA, which looks like so:
42
+
43
+ 1. Use a spaCy model to select possible aspect span candidates.
44
+ 2. Use a SetFit model to filter these possible aspect span candidates.
45
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** SetFit
51
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
52
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
53
+ - **spaCy Model:** id_core_news_trf
54
+ - **SetFitABSA Aspect Model:** [kaylaisya/absa-aspect](https://huggingface.co/kaylaisya/absa-aspect)
55
+ - **SetFitABSA Polarity Model:** [kaylaisya/absa-polarity](https://huggingface.co/kaylaisya/absa-polarity)
56
+ - **Maximum Sequence Length:** 8192 tokens
57
+ - **Number of Classes:** 3 classes
58
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
59
+ <!-- - **Language:** Unknown -->
60
+ <!-- - **License:** Unknown -->
61
+
62
+ ### Model Sources
63
+
64
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
65
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
66
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
67
+
68
+ ### Model Labels
69
+ | Label | Examples |
70
+ |:--------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
71
+ | positif | <ul><li>'enak enak, pelayanannya juga mantap,:makanannya enak enak, pelayanannya juga mantap, terbaik lah'</li><li>'Rasanya selalu enak gak:Rasanya selalu enak gak pernah berubah, higines. Anak2 pada suka makan ayam goreng mcd'</li><li>'Pelayanannya cukup ramah dan:Pelayanannya cukup ramah dan praktis. Makanannya enak dan segar, khususnya es krim. Sip, lah.'</li></ul> |
72
+ | netral | <ul><li>'nya unik.. harganya standar lah sesuai:Sangat strategis,ramai, cukup luas dan nyaman, pelayanan ramah dan cepat.. parkiran juga luas , akhirnya kesampaian juga cobain menu ayam gulai cukup enak&cita rasa nya unik.. harganya standar lah sesuai rasa ,salam sukses selalu ☺️'</li><li>'makan siang, tempat nya menjorok kedalam:Mampir ke sini bareng temen mau makan siang, tempat nya menjorok kedalam, tatanan design nya MCD semua standard sesuai dengan kapasitas lahan nya, tempatnya juga dijaga banget kebersihannya, pelayanannya bagus, kakak-kakak pelayannya juga …'</li><li>'mbanya bantu take tempat, gesit ketika:Ini mba2nya supuer helpfull, karena kesana serombongan ber10 orang, mbanya bantu take tempat, gesit ketika dimintai bantuan. …'</li></ul> |
73
+ | negatif | <ul><li>'Pelayanan DriveThru terburuk!:Pelayanan DriveThru terburuk!!! Parkiran jg sempit gak bs keluar kalo batal drive thru. Ngantri drive thru 1 jam! Gak abis pikir. Tolong deh diperbaiki. Jika memang gak bs melayani, kasi tau dan segera ditutup drpd orang menunggu lama. Tolong banget management McD buah batu diperhatikan'</li><li>'Apa-apaan ini pelayanannya, pesen coke:Apa-apaan ini pelayanannya, pesen coke float doang sampe 32 menit. Dah gitu tadi datang workernya bilang ga ready sodanya, lah aturan dari awal pas payment di kasir langsung ngomong kalo ada mulut & otak. Kek gitu lalu nyuruh aku konfir ke kasir, …'</li><li>'menu paket ,rasa ayam crispyny agak:Over all ok...\nCm kmriin pesen menu paket ,rasa ayam crispyny agak asin.. smga kedepan lebih baik lg.'</li></ul> |
74
+
75
+ ## Uses
76
+
77
+ ### Direct Use for Inference
78
+
79
+ First install the SetFit library:
80
+
81
+ ```bash
82
+ pip install setfit
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+
87
+ ```python
88
+ from setfit import AbsaModel
89
+
90
+ # Download from the 🤗 Hub
91
+ model = AbsaModel.from_pretrained(
92
+ "kaylaisya/absa-aspect",
93
+ "kaylaisya/absa-polarity",
94
+ )
95
+ # Run inference
96
+ preds = model("The food was great, but the venue is just way too busy.")
97
+ ```
98
+
99
+ <!--
100
+ ### Downstream Use
101
+
102
+ *List how someone could finetune this model on their own dataset.*
103
+ -->
104
+
105
+ <!--
106
+ ### Out-of-Scope Use
107
+
108
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
109
+ -->
110
+
111
+ <!--
112
+ ## Bias, Risks and Limitations
113
+
114
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
115
+ -->
116
+
117
+ <!--
118
+ ### Recommendations
119
+
120
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
121
+ -->
122
+
123
+ ## Training Details
124
+
125
+ ### Training Set Metrics
126
+ | Training set | Min | Median | Max |
127
+ |:-------------|:----|:--------|:----|
128
+ | Word count | 6 | 27.2254 | 64 |
129
+
130
+ | Label | Training Sample Count |
131
+ |:--------|:----------------------|
132
+ | konflik | 0 |
133
+ | negatif | 12 |
134
+ | netral | 24 |
135
+ | positif | 758 |
136
+
137
+ ### Training Hyperparameters
138
+ - batch_size: (64, 64)
139
+ - num_epochs: (1, 1)
140
+ - max_steps: -1
141
+ - sampling_strategy: oversampling
142
+ - body_learning_rate: (2e-05, 1e-05)
143
+ - head_learning_rate: 0.01
144
+ - loss: CosineSimilarityLoss
145
+ - distance_metric: cosine_distance
146
+ - margin: 0.25
147
+ - end_to_end: False
148
+ - use_amp: True
149
+ - warmup_proportion: 0.1
150
+ - seed: 42
151
+ - eval_max_steps: -1
152
+ - load_best_model_at_end: False
153
+
154
+ ### Framework Versions
155
+ - Python: 3.10.12
156
+ - SetFit: 1.0.3
157
+ - Sentence Transformers: 3.0.1
158
+ - spaCy: 3.7.4
159
+ - Transformers: 4.36.2
160
+ - PyTorch: 2.3.0+cu121
161
+ - Datasets: 2.19.2
162
+ - Tokenizers: 0.15.2
163
+
164
+ ## Citation
165
+
166
+ ### BibTeX
167
+ ```bibtex
168
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
169
+ doi = {10.48550/ARXIV.2209.11055},
170
+ url = {https://arxiv.org/abs/2209.11055},
171
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
172
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
173
+ title = {Efficient Few-Shot Learning Without Prompts},
174
+ publisher = {arXiv},
175
+ year = {2022},
176
+ copyright = {Creative Commons Attribution 4.0 International}
177
+ }
178
+ ```
179
+
180
+ <!--
181
+ ## Glossary
182
+
183
+ *Clearly define terms in order to be accessible across audiences.*
184
+ -->
185
+
186
+ <!--
187
+ ## Model Card Authors
188
+
189
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
190
+ -->
191
+
192
+ <!--
193
+ ## Model Card Contact
194
+
195
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
196
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "firqaaa/indo-setfit-absa-bert-base-restaurants-polarity",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.36.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.36.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "span_context": 3,
3
+ "normalize_embeddings": false,
4
+ "spacy_model": "id_core_news_trf",
5
+ "labels": [
6
+ "konflik",
7
+ "negatif",
8
+ "netral",
9
+ "positif"
10
+ ]
11
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f63dee23a0bf95fda64e8d449f3b986d248f47902b6bd425fe8c3c8a990cf1a
3
+ size 2271064456
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b969a8393f074faca1b3632bbec9d7cc8f87bdee2a40bd4058c693cbcf86b58c
3
+ size 33735
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1af481bd08ed9347cf9d3d07c24e5de75a10983819de076436400609e6705686
3
+ size 17083075
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 8192,
50
+ "model_max_length": 8192,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "sp_model_kwargs": {},
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }