kclee111 commited on
Commit
ecca05f
·
verified ·
1 Parent(s): 2870ba8

Training complete

Browse files
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.9357083678541839
30
  - name: Recall
31
  type: recall
32
- value: 0.9503534163581285
33
  - name: F1
34
  type: f1
35
- value: 0.9429740335643316
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9865632542532525
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0619
49
- - Precision: 0.9357
50
- - Recall: 0.9504
51
- - F1: 0.9430
52
- - Accuracy: 0.9866
53
 
54
  ## Model description
55
 
@@ -80,9 +80,9 @@ The following hyperparameters were used during training:
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | 0.0771 | 1.0 | 1756 | 0.0682 | 0.9056 | 0.9303 | 0.9178 | 0.9804 |
84
- | 0.0343 | 2.0 | 3512 | 0.0695 | 0.9244 | 0.9424 | 0.9333 | 0.9847 |
85
- | 0.0242 | 3.0 | 5268 | 0.0619 | 0.9357 | 0.9504 | 0.9430 | 0.9866 |
86
 
87
 
88
  ### Framework versions
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.9377696647859276
30
  - name: Recall
31
  type: recall
32
+ value: 0.9510265903736116
33
  - name: F1
34
  type: f1
35
+ value: 0.9443516042780749
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9862983457938423
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.0630
49
+ - Precision: 0.9378
50
+ - Recall: 0.9510
51
+ - F1: 0.9444
52
+ - Accuracy: 0.9863
53
 
54
  ## Model description
55
 
 
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.0764 | 1.0 | 1756 | 0.0679 | 0.9084 | 0.9295 | 0.9188 | 0.9813 |
84
+ | 0.0361 | 2.0 | 3512 | 0.0680 | 0.9283 | 0.9429 | 0.9355 | 0.9847 |
85
+ | 0.023 | 3.0 | 5268 | 0.0630 | 0.9378 | 0.9510 | 0.9444 | 0.9863 |
86
 
87
 
88
  ### Framework versions
runs/Dec29_08-22-05_LEGION/events.out.tfevents.1735428129.LEGION.24488.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:35c4f79f2678bd1b1c1f40cd8ce2e4deef96980e14f5c031254ae603fea598ee
3
- size 8435
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:125edf3218b27b0e78819139da99c33807573c4b9e33754609909e2b0abba771
3
+ size 9261