--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.475 --- # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5599 - Accuracy: 0.475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 5 | 2.0884 | 0.1125 | | 2.08 | 2.0 | 10 | 2.0750 | 0.1437 | | 2.08 | 3.0 | 15 | 2.0519 | 0.2125 | | 2.0091 | 4.0 | 20 | 2.0177 | 0.225 | | 2.0091 | 5.0 | 25 | 1.9777 | 0.2625 | | 1.8779 | 6.0 | 30 | 1.9381 | 0.3125 | | 1.8779 | 7.0 | 35 | 1.8990 | 0.3438 | | 1.7355 | 8.0 | 40 | 1.8592 | 0.3688 | | 1.7355 | 9.0 | 45 | 1.8217 | 0.3812 | | 1.598 | 10.0 | 50 | 1.7844 | 0.4 | | 1.598 | 11.0 | 55 | 1.7536 | 0.4062 | | 1.4689 | 12.0 | 60 | 1.7217 | 0.4188 | | 1.4689 | 13.0 | 65 | 1.7019 | 0.4188 | | 1.3534 | 14.0 | 70 | 1.6773 | 0.4188 | | 1.3534 | 15.0 | 75 | 1.6614 | 0.425 | | 1.2526 | 16.0 | 80 | 1.6448 | 0.4562 | | 1.2526 | 17.0 | 85 | 1.6306 | 0.45 | | 1.1657 | 18.0 | 90 | 1.6201 | 0.4562 | | 1.1657 | 19.0 | 95 | 1.6067 | 0.4562 | | 1.0918 | 20.0 | 100 | 1.5992 | 0.45 | | 1.0918 | 21.0 | 105 | 1.5889 | 0.4562 | | 1.0311 | 22.0 | 110 | 1.5852 | 0.4562 | | 1.0311 | 23.0 | 115 | 1.5767 | 0.4625 | | 0.9814 | 24.0 | 120 | 1.5733 | 0.45 | | 0.9814 | 25.0 | 125 | 1.5688 | 0.4625 | | 0.9439 | 26.0 | 130 | 1.5643 | 0.4562 | | 0.9439 | 27.0 | 135 | 1.5620 | 0.4625 | | 0.918 | 28.0 | 140 | 1.5599 | 0.475 | | 0.918 | 29.0 | 145 | 1.5586 | 0.4625 | | 0.9044 | 30.0 | 150 | 1.5582 | 0.4562 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3