File size: 1,631 Bytes
c323c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: mit
base_model: facebook/esm2_t30_150M_UR50D
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: esm2_t30_150M_UR50D-11k-PANTHER-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# esm2_t30_150M_UR50D-11k-PANTHER-classification

This model is a fine-tuned version of [facebook/esm2_t30_150M_UR50D](https://huggingface.co/facebook/esm2_t30_150M_UR50D) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3041
- Accuracy: 0.4290

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log        | 0.9944 | 67   | 3.6678          | 0.2561   |
| No log        | 1.9889 | 134  | 3.3917          | 0.3890   |
| No log        | 2.9833 | 201  | 3.3041          | 0.4290   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1