File size: 1,993 Bytes
acb93c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187ef68
 
acb93c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187ef68
acb93c2
 
 
 
 
187ef68
 
 
 
 
 
 
 
 
acb93c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
base_model: facebook/esm2_t30_150M_UR50D
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: esm2_t30_150M_UR50D-pfam-classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# esm2_t30_150M_UR50D-pfam-classification

This model is a fine-tuned version of [facebook/esm2_t30_150M_UR50D](https://huggingface.co/facebook/esm2_t30_150M_UR50D) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2090
- Accuracy: 0.7686

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 9

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log        | 0.9966 | 222  | 3.0116          | 0.4560   |
| No log        | 1.9978 | 445  | 2.3631          | 0.5747   |
| 2.9792        | 2.9989 | 668  | 1.9594          | 0.6399   |
| 2.9792        | 4.0    | 891  | 1.6825          | 0.6916   |
| 1.6634        | 4.9966 | 1113 | 1.4988          | 0.7316   |
| 1.6634        | 5.9978 | 1336 | 1.3650          | 0.7539   |
| 1.0252        | 6.9989 | 1559 | 1.2806          | 0.7627   |
| 1.0252        | 8.0    | 1782 | 1.2271          | 0.7699   |
| 1.0252        | 8.9697 | 1998 | 1.2090          | 0.7686   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1