File size: 2,049 Bytes
396496c 9bc785b 396496c 9bc785b 396496c 9bc785b 396496c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: facebook/esm2_t33_650M_UR50D
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: esm2_t33_650M_UR50D-uniprot-7class
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# esm2_t33_650M_UR50D-uniprot-7class
This model is a fine-tuned version of [facebook/esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4652
- Accuracy: 0.8605
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log | 0.9846 | 4 | 1.0980 | 0.6919 |
| No log | 1.9692 | 8 | 0.9456 | 0.6919 |
| No log | 2.9538 | 12 | 0.8277 | 0.6919 |
| No log | 3.9385 | 16 | 0.7322 | 0.7267 |
| No log | 4.9231 | 20 | 0.6554 | 0.7616 |
| No log | 5.9077 | 24 | 0.5913 | 0.8198 |
| No log | 6.8923 | 28 | 0.5352 | 0.8314 |
| No log | 7.8769 | 32 | 0.4964 | 0.8314 |
| No log | 8.8615 | 36 | 0.4736 | 0.8547 |
| No log | 9.8462 | 40 | 0.4652 | 0.8605 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|