File size: 2,049 Bytes
396496c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc785b
 
396496c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc785b
396496c
 
 
 
 
9bc785b
 
 
 
 
 
 
 
 
 
396496c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
base_model: facebook/esm2_t33_650M_UR50D
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: esm2_t33_650M_UR50D-uniprot-7class
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# esm2_t33_650M_UR50D-uniprot-7class

This model is a fine-tuned version of [facebook/esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4652
- Accuracy: 0.8605

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log        | 0.9846 | 4    | 1.0980          | 0.6919   |
| No log        | 1.9692 | 8    | 0.9456          | 0.6919   |
| No log        | 2.9538 | 12   | 0.8277          | 0.6919   |
| No log        | 3.9385 | 16   | 0.7322          | 0.7267   |
| No log        | 4.9231 | 20   | 0.6554          | 0.7616   |
| No log        | 5.9077 | 24   | 0.5913          | 0.8198   |
| No log        | 6.8923 | 28   | 0.5352          | 0.8314   |
| No log        | 7.8769 | 32   | 0.4964          | 0.8314   |
| No log        | 8.8615 | 36   | 0.4736          | 0.8547   |
| No log        | 9.8462 | 40   | 0.4652          | 0.8605   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1