--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: message-contribution results: [] --- # message-contribution This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a custom dataset curated by the model engineer. It achieves the following results on the evaluation set: - Loss: 0.0015 - Accuracy: 0.9999 ## Model description A binary classifier of text inputs (messages) designed to represent the contribution of messages as `"High"` or `"Low"`. - **`High`** represents natural language that advances or explicates meaning - **`Low`** represents cliché, trivial, or non-sensical natural language. ## Intended uses & limitations Designed for natural language detection and/or weighting of natural language messages. ## Training procedure ```py # label maps id2label = {0: "low", 1: "high"} label2id = {"low": 0, "high": 1} # auto model model = AutoModelForSequenceClassification.from_pretrained( "distilbert-base-uncased", num_labels=2, id2label=id2label, label2id=label2id, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.2 ### Training results | Epoch | Step | Val. Loss | Accuracy | |:-----:|:----:|:---------:|:--------:| | 0.01 | 10 | 0.4780 | 0.96 | | 0.02 | 20 | 0.1759 | 0.965 | | 0.03 | 30 | 0.0477 | 0.995 | | 0.04 | 40 | 0.1199 | 0.95 | | 0.05 | 50 | 0.0413 | 0.99 | | 0.06 | 60 | 0.0068 | 1.0 | | 0.07 | 70 | 0.0056 | 1.0 | | 0.08 | 80 | 0.0220 | 0.995 | | 0.09 | 90 | 0.0081 | 1.0 | | 0.1 | 100 | 0.0074 | 0.995 | | 0.11 | 110 | 0.0035 | 1.0 | | 0.12 | 120 | 0.0030 | 1.0 | | 0.13 | 130 | 0.0022 | 1.0 | | 0.14 | 140 | 0.0024 | 1.0 | | 0.15 | 150 | 0.0021 | 1.0 | | 0.16 | 160 | 0.0016 | 1.0 | | 0.17 | 170 | 0.0016 | 1.0 | | 0.18 | 180 | 0.0016 | 1.0 | | 0.19 | 190 | 0.0015 | 1.0 | | 0.2 | 200 | 0.0015 | 1.0 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3