--- library_name: transformers base_model: DeepPavlov/rubert-base-cased-conversational tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert_ner_output results: [] --- # bert_ner_output This model is a fine-tuned version of [DeepPavlov/rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0114 - Precision: 0.9004 - Recall: 0.9049 - F1: 0.9026 - Accuracy: 0.9972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0038 | 1.0 | 6119 | 0.0109 | 0.8962 | 0.9070 | 0.9016 | 0.9972 | | 0.0193 | 2.0 | 12238 | 0.0114 | 0.9004 | 0.9049 | 0.9026 | 0.9972 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3