File size: 1,896 Bytes
95ff7ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: clef1ar
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# clef1ar

This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4347
- F1: 0.6539

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1     |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.5791        | 0.4843 | 200  | 0.5243          | 0.0    |
| 0.5199        | 0.9685 | 400  | 0.4892          | 0.5056 |
| 0.4637        | 1.4528 | 600  | 0.4469          | 0.5788 |
| 0.4391        | 1.9370 | 800  | 0.4363          | 0.5637 |
| 0.4206        | 2.4213 | 1000 | 0.4347          | 0.6539 |
| 0.4189        | 2.9056 | 1200 | 0.4250          | 0.6359 |
| 0.4049        | 3.3898 | 1400 | 0.4270          | 0.6217 |
| 0.3796        | 3.8741 | 1600 | 0.4386          | 0.6212 |
| 0.4007        | 4.3584 | 1800 | 0.4310          | 0.6301 |
| 0.3785        | 4.8426 | 2000 | 0.4315          | 0.6205 |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1