File size: 2,020 Bytes
bd77390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: clef1eng
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# clef1eng

This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3082
- F1: 0.7683

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step | Validation Loss | F1     |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.417         | 0.3949 | 500  | 0.3184          | 0.7343 |
| 0.3081        | 0.7899 | 1000 | 0.3171          | 0.7185 |
| 0.2713        | 1.1848 | 1500 | 0.3191          | 0.7559 |
| 0.2528        | 1.5798 | 2000 | 0.3118          | 0.7552 |
| 0.2489        | 1.9747 | 2500 | 0.3082          | 0.7683 |
| 0.2225        | 2.3697 | 3000 | 0.3392          | 0.7706 |
| 0.2181        | 2.7646 | 3500 | 0.3100          | 0.7616 |
| 0.2088        | 3.1596 | 4000 | 0.3271          | 0.7649 |
| 0.2149        | 3.5545 | 4500 | 0.3486          | 0.7644 |
| 0.2126        | 3.9494 | 5000 | 0.3419          | 0.7711 |
| 0.2145        | 4.3444 | 5500 | 0.3319          | 0.7651 |
| 0.204         | 4.7393 | 6000 | 0.3373          | 0.7723 |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1