kelestemur
commited on
Commit
·
f5adcff
1
Parent(s):
a2efca3
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1777.32 +/- 23.42
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5730c60b9c725a81cf055d1cec8911315b783b768fa2d852935e25a4b5323d68
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fee26bf9af0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee26bf9b80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee26bf9c10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee26bf9ca0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fee26bf9d30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fee26bf9dc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fee26bf9e50>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee26bf9ee0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fee26bf9f70>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee26bfe040>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee26bfe0d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee26bfe160>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fee26bfa120>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1677468883890499997,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADhuJT8IQ3u/h1/bvgWALj/8Aao9s2D+vtgtZb+XFx6/pEHevwSqQMCOYsq92oqlv4Hk3D04jcA+iiERP4bkpb7Oja8/UDCMQDxk0z6sq9O/fBi8v1oTmD0GqgJAU0m9PiVO37++wIs+HYvuv+Y3ZT8W2sQ/tamSPkFAJD/EYpI/RHHyvwD8GsCUYqG/UlbSv/QSOj8Xg86/ySdUP9twjr+F696/Fq4IvjpNCD9M+cE/JMjlvwOdyz7qohg/e3txQHmJF7/zDt2/2bJiPT0Inj+nvRI/vsCLPh2L7r+U9I6/5W08P/flRr6IVdQ++BM2P1BNs7/0upo/w/Zrv8RPP79UDIS/PxYhP0IvST+s8ic+VD2HPq2IN79y2Bo/Pi2HPE0/ej+TB46/p6Sxv56msL6LNC6/NbHTPnsV8z/7MKM/p70SP77Aiz71XQk/lPSOv+pSzz+vr9O+5It/PqcayD8HEwDANZW2P8fT1L/m4H6/oFLUvSp0dz8RooY/XZf/O7q5zb4MmRm/noMaP26x2TxJN4G/UrfQv30l1L8HYTE/D2Elv5hpSz+UFgFAHZZTv6e9Ej++wIs+9V0JP5T0jr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADyVKK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1JcfPAAAAAB3fNq/AAAAACLcm70AAAAAOfTjPwAAAACBDe+9AAAAAHlM5D8AAAAAYzGWOwAAAACPnuu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmfJYtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEbdPTwAAAAAb7TbvwAAAAAvAGM9AAAAACLP8z8AAAAAb5cLvgAAAABwFgBAAAAAAJdUg70AAAAAo6jtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXsvzQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAa3zC8AAAAAPmH3r8AAAAAlIXcugAAAAA5svA/AAAAAFmfSLwAAAAARYXpPwAAAADn4pi8AAAAAPi3/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADH5PS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYKpCvQAAAADTA/y/AAAAAGHqi70AAAAA2Jr2PwAAAAAnuA69AAAAAEig6D8AAAAAUTHOPAAAAADDbeK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJi/c1R+BpaMAWyUTegDjAF0lEdAq/iaLGaQWHV9lChoBkdAmj6hew9q12gHTegDaAhHQKv5OFRHf/F1fZQoaAZHQJfYWV0Lc9JoB03oA2gIR0Cr+5xRuTA4dX2UKGgGR0CZ+U7Rv3rVaAdN6ANoCEdAq/76XyAhCHV9lChoBkdAl5EKeoUBXGgHTegDaAhHQKwE1E/jbSJ1fZQoaAZHQJa4NIH1OCZoB03oA2gIR0CsBXLUsnRcdX2UKGgGR0CXFquh9LHuaAdN6ANoCEdArAgslVtGeHV9lChoBkdAlqwbNwBHTmgHTegDaAhHQKwNh+KCQLh1fZQoaAZHQJfqDuAqd6NoB03oA2gIR0CsFVh4lhPTdX2UKGgGR0CWLaN7SiM6aAdN6ANoCEdArBXzm6oVEnV9lChoBkdAlUwE163RX2gHTegDaAhHQKwYYYuTRpl1fZQoaAZHQJPBiVmjCYVoB03oA2gIR0CsG9Q1rIo3dX2UKGgGR0CVjM3trsSkaAdN6ANoCEdArCG6/20zCXV9lChoBkdAlfZhcZ9/jWgHTegDaAhHQKwiXGxUvPF1fZQoaAZHQJaZGMVDa5BoB03oA2gIR0CsJNG9g4OudX2UKGgGR0CT6bwfyPMjaAdN6ANoCEdArCly/KyOaXV9lChoBkdAls3GD15B1WgHTegDaAhHQKwylBKtga51fZQoaAZHQJHmoNOM2m5oB03oA2gIR0CsMzbM5fdAdX2UKGgGR0CU3d0ngHeKaAdN6ANoCEdArDWcrEtNBXV9lChoBkdAlSJF2mpEQWgHTegDaAhHQKw5HeYUnG91fZQoaAZHQJWIZm9QGfRoB03oA2gIR0CsPub+1jRVdX2UKGgGR0CWduOdXko4aAdN6ANoCEdArD+HRgJC0HV9lChoBkdAlMlgU+LWJGgHTegDaAhHQKxB+Pjn3cp1fZQoaAZHQJSu1pPAO8VoB03oA2gIR0CsRYQsoUi7dX2UKGgGR0CYYm4OMERraAdN6ANoCEdArE62KCQLeHV9lChoBkdAlz6gmReTmmgHTegDaAhHQKxPvNTtLL91fZQoaAZHQJjfooJAt4BoB03oA2gIR0CsUrHXd0q6dX2UKGgGR0CTLoQ/HHWCaAdN6ANoCEdArFYadUbT+nV9lChoBkdAk8vylN1yNmgHTegDaAhHQKxb47U5MlF1fZQoaAZHQJaBiInBtUJoB03oA2gIR0CsXIMV1wHadX2UKGgGR0CTWXJjUd7waAdN6ANoCEdArF70f3evZHV9lChoBkdAllLHVTaTOmgHTegDaAhHQKxiVE61b7l1fZQoaAZHQJZ3E6Oo5xRoB03oA2gIR0CsacKR+z+ndX2UKGgGR0CWTMw6hg3MaAdN6ANoCEdArGrD4k/r0XV9lChoBkdAko1uanaWX2gHTegDaAhHQKxvA+cH4XZ1fZQoaAZHQJEJrKEFnqVoB03oA2gIR0Cscx7VJ+UhdX2UKGgGR0CVy2SG8EmqaAdN6ANoCEdArHjhwCKaX3V9lChoBkdAlULxbGFSKmgHTegDaAhHQKx5f7BwdbR1fZQoaAZHQJff4rTYukFoB03oA2gIR0Cse98Dr7fpdX2UKGgGR0CZHu1kUbkwaAdN6ANoCEdArH8wNLDhtXV9lChoBkdAmRyAN0/4ZmgHTegDaAhHQKyFW97ngYR1fZQoaAZHQJcSUQrc0tRoB03oA2gIR0CshlEcsDnvdX2UKGgGR0CYC9LFn7HiaAdN6ANoCEdArIotr9ETg3V9lChoBkdAlvvDImw7kmgHTegDaAhHQKyP1AnDziF1fZQoaAZHQJV7EyULUkRoB03oA2gIR0CslZSU1Q67dX2UKGgGR0CXEE+gUUO/aAdN6ANoCEdArJYsPMB6r3V9lChoBkdAlC59KZlWfmgHTegDaAhHQKyYqD15B1N1fZQoaAZHQIuxHAZbY9RoB03oA2gIR0CsnCOKwY+CdX2UKGgGR0CTAgB2OhkBaAdN6ANoCEdArKId8/lhgHV9lChoBkdAkLSkcGTs6mgHTegDaAhHQKyivtv4ubt1fZQoaAZHQJCMVmUW2w5oB03oA2gIR0CspgkCV8kVdX2UKGgGR0CVANWfK6nSaAdN6ANoCEdArK2JSP2f03V9lChoBkdAl1XTurp7kWgHTegDaAhHQKy3NzPrv9d1fZQoaAZHQJZ5TXoTwlVoB03oA2gIR0Cst9b+tKZldX2UKGgGR0CVq6tMfzSUaAdN6ANoCEdArLpIYxcmjXV9lChoBkdAmXxQuVX3g2gHTegDaAhHQKy9xMwlByF1fZQoaAZHQJKp/thNM49oB03oA2gIR0Csw5KhtcfOdX2UKGgGR0CSulfrKNhmaAdN6ANoCEdArMQyeNDMNnV9lChoBkdAlfndKdxyXGgHTegDaAhHQKzHFpUxVQ11fZQoaAZHQJYtESnLq2VoB03oA2gIR0CszJv3JxNqdX2UKGgGR0CS+6TeO4oaaAdN6ANoCEdArNQ7e/Ho5nV9lChoBkdAlnhgkxASnWgHTegDaAhHQKzU3w8W9Dh1fZQoaAZHQJfTGNJe3QVoB03oA2gIR0Cs10mCROk+dX2UKGgGR0CVVkcFyJbdaAdN6ANoCEdArNrBeTmnwXV9lChoBkdAlaxJ5NXYDmgHTegDaAhHQKzgjai9Iwx1fZQoaAZHQJdHqo5xR2toB03oA2gIR0Cs4SplrdnCdX2UKGgGR0CXL4FBppN9aAdN6ANoCEdArOOi7Ciyp3V9lChoBkdAlIlIDxLCemgHTegDaAhHQKzoLfjS5RV1fZQoaAZHQJSIeVqveP9oB03oA2gIR0Cs8YRx1gYxdX2UKGgGR0CWPJUSIxgzaAdN6ANoCEdArPIjdSEUTXV9lChoBkdAkN5cmBvrGGgHTegDaAhHQKz0jMg2ZRd1fZQoaAZHQJV5RnkDIR1oB03oA2gIR0Cs9/apgkTpdX2UKGgGR0CVt7eqaPS2aAdN6ANoCEdArP21Tzd1uHV9lChoBkdAmOhPVqesgmgHTegDaAhHQKz+U5UcXFd1fZQoaAZHQJKrW1E3KjloB03oA2gIR0CtAMM+FDfFdX2UKGgGR0CS3lObRWtEaAdN6ANoCEdArQRIsunMuHV9lChoBkdAmD7+XZ5AyGgHTegDaAhHQK0NQlQdjoZ1fZQoaAZHQJaoM31jAi5oB03oA2gIR0CtDlFT3qRmdX2UKGgGR0CBqpHuqm0maAdN6ANoCEdArRGA4+8oQXV9lChoBkdAlbLDsIE8rGgHTegDaAhHQK0U+1pCa7V1fZQoaAZHQJHr/3lCCz1oB03oA2gIR0CtGw/nnuAqdX2UKGgGR0CSiQ0dzXBhaAdN6ANoCEdArRu8Pz4DcXV9lChoBkdAkNLdi+cpb2gHTegDaAhHQK0eTTnaFmF1fZQoaAZHQJYcMUtZmqZoB03oA2gIR0CtIcLKmsNldX2UKGgGR0CQIGhqCYkWaAdN6ANoCEdArSnqiXY153V9lChoBkdAkbunxaxHG2gHTegDaAhHQK0q9ye7L+x1fZQoaAZHQJH+FLUTcqRoB03oA2gIR0CtLxvfj0cwdX2UKGgGR0CRAV3HaN+9aAdN6ANoCEdArTLbHEMspXV9lChoBkdAkoJBtpEhJWgHTegDaAhHQK04sO+ZgG91fZQoaAZHQJUDztsvZh9oB03oA2gIR0CtOUtV7x/edX2UKGgGR0CUIeQO4G2UaAdN6ANoCEdArTvZL7Gec3V9lChoBkdAlAQLL2YfGWgHTegDaAhHQK0/Uf/WDpV1fZQoaAZHQJTiaFK02LpoB03oA2gIR0CtRhPe54GEdX2UKGgGR0CR22aZQYUGaAdN6ANoCEdArUdEit7rs3V9lChoBkdAlEGbGrCFbmgHTegDaAhHQK1LRn27FsJ1fZQoaAZHQJW+UraufVZoB03oA2gIR0CtUF4Ajps5dX2UKGgGR0CNt+uKXOW0aAdN6ANoCEdArVZ6v/zasnV9lChoBkdAliF2kFfReGgHTegDaAhHQK1XGcZLqUx1fZQoaAZHQJWsYRtgrpdoB03oA2gIR0CtWZa1stTUdX2UKGgGR0CYjWiSJTESaAdN6ANoCEdArV0J6+nIhnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01e0404537160e7ee0a077a729867da3384394cc29e9f0976e3b7a1f0784deef
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6512d99767b81ecd26ae103cd3a0860176dccffdcb034a29b25e497f2ff01b8b
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fee26bf9af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee26bf9b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee26bf9c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee26bf9ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fee26bf9d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fee26bf9dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fee26bf9e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee26bf9ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fee26bf9f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee26bfe040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee26bfe0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee26bfe160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fee26bfa120>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677468883890499997, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADhuJT8IQ3u/h1/bvgWALj/8Aao9s2D+vtgtZb+XFx6/pEHevwSqQMCOYsq92oqlv4Hk3D04jcA+iiERP4bkpb7Oja8/UDCMQDxk0z6sq9O/fBi8v1oTmD0GqgJAU0m9PiVO37++wIs+HYvuv+Y3ZT8W2sQ/tamSPkFAJD/EYpI/RHHyvwD8GsCUYqG/UlbSv/QSOj8Xg86/ySdUP9twjr+F696/Fq4IvjpNCD9M+cE/JMjlvwOdyz7qohg/e3txQHmJF7/zDt2/2bJiPT0Inj+nvRI/vsCLPh2L7r+U9I6/5W08P/flRr6IVdQ++BM2P1BNs7/0upo/w/Zrv8RPP79UDIS/PxYhP0IvST+s8ic+VD2HPq2IN79y2Bo/Pi2HPE0/ej+TB46/p6Sxv56msL6LNC6/NbHTPnsV8z/7MKM/p70SP77Aiz71XQk/lPSOv+pSzz+vr9O+5It/PqcayD8HEwDANZW2P8fT1L/m4H6/oFLUvSp0dz8RooY/XZf/O7q5zb4MmRm/noMaP26x2TxJN4G/UrfQv30l1L8HYTE/D2Elv5hpSz+UFgFAHZZTv6e9Ej++wIs+9V0JP5T0jr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADyVKK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1JcfPAAAAAB3fNq/AAAAACLcm70AAAAAOfTjPwAAAACBDe+9AAAAAHlM5D8AAAAAYzGWOwAAAACPnuu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmfJYtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEbdPTwAAAAAb7TbvwAAAAAvAGM9AAAAACLP8z8AAAAAb5cLvgAAAABwFgBAAAAAAJdUg70AAAAAo6jtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXsvzQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAa3zC8AAAAAPmH3r8AAAAAlIXcugAAAAA5svA/AAAAAFmfSLwAAAAARYXpPwAAAADn4pi8AAAAAPi3/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADH5PS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYKpCvQAAAADTA/y/AAAAAGHqi70AAAAA2Jr2PwAAAAAnuA69AAAAAEig6D8AAAAAUTHOPAAAAADDbeK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJi/c1R+BpaMAWyUTegDjAF0lEdAq/iaLGaQWHV9lChoBkdAmj6hew9q12gHTegDaAhHQKv5OFRHf/F1fZQoaAZHQJfYWV0Lc9JoB03oA2gIR0Cr+5xRuTA4dX2UKGgGR0CZ+U7Rv3rVaAdN6ANoCEdAq/76XyAhCHV9lChoBkdAl5EKeoUBXGgHTegDaAhHQKwE1E/jbSJ1fZQoaAZHQJa4NIH1OCZoB03oA2gIR0CsBXLUsnRcdX2UKGgGR0CXFquh9LHuaAdN6ANoCEdArAgslVtGeHV9lChoBkdAlqwbNwBHTmgHTegDaAhHQKwNh+KCQLh1fZQoaAZHQJfqDuAqd6NoB03oA2gIR0CsFVh4lhPTdX2UKGgGR0CWLaN7SiM6aAdN6ANoCEdArBXzm6oVEnV9lChoBkdAlUwE163RX2gHTegDaAhHQKwYYYuTRpl1fZQoaAZHQJPBiVmjCYVoB03oA2gIR0CsG9Q1rIo3dX2UKGgGR0CVjM3trsSkaAdN6ANoCEdArCG6/20zCXV9lChoBkdAlfZhcZ9/jWgHTegDaAhHQKwiXGxUvPF1fZQoaAZHQJaZGMVDa5BoB03oA2gIR0CsJNG9g4OudX2UKGgGR0CT6bwfyPMjaAdN6ANoCEdArCly/KyOaXV9lChoBkdAls3GD15B1WgHTegDaAhHQKwylBKtga51fZQoaAZHQJHmoNOM2m5oB03oA2gIR0CsMzbM5fdAdX2UKGgGR0CU3d0ngHeKaAdN6ANoCEdArDWcrEtNBXV9lChoBkdAlSJF2mpEQWgHTegDaAhHQKw5HeYUnG91fZQoaAZHQJWIZm9QGfRoB03oA2gIR0CsPub+1jRVdX2UKGgGR0CWduOdXko4aAdN6ANoCEdArD+HRgJC0HV9lChoBkdAlMlgU+LWJGgHTegDaAhHQKxB+Pjn3cp1fZQoaAZHQJSu1pPAO8VoB03oA2gIR0CsRYQsoUi7dX2UKGgGR0CYYm4OMERraAdN6ANoCEdArE62KCQLeHV9lChoBkdAlz6gmReTmmgHTegDaAhHQKxPvNTtLL91fZQoaAZHQJjfooJAt4BoB03oA2gIR0CsUrHXd0q6dX2UKGgGR0CTLoQ/HHWCaAdN6ANoCEdArFYadUbT+nV9lChoBkdAk8vylN1yNmgHTegDaAhHQKxb47U5MlF1fZQoaAZHQJaBiInBtUJoB03oA2gIR0CsXIMV1wHadX2UKGgGR0CTWXJjUd7waAdN6ANoCEdArF70f3evZHV9lChoBkdAllLHVTaTOmgHTegDaAhHQKxiVE61b7l1fZQoaAZHQJZ3E6Oo5xRoB03oA2gIR0CsacKR+z+ndX2UKGgGR0CWTMw6hg3MaAdN6ANoCEdArGrD4k/r0XV9lChoBkdAko1uanaWX2gHTegDaAhHQKxvA+cH4XZ1fZQoaAZHQJEJrKEFnqVoB03oA2gIR0Cscx7VJ+UhdX2UKGgGR0CVy2SG8EmqaAdN6ANoCEdArHjhwCKaX3V9lChoBkdAlULxbGFSKmgHTegDaAhHQKx5f7BwdbR1fZQoaAZHQJff4rTYukFoB03oA2gIR0Cse98Dr7fpdX2UKGgGR0CZHu1kUbkwaAdN6ANoCEdArH8wNLDhtXV9lChoBkdAmRyAN0/4ZmgHTegDaAhHQKyFW97ngYR1fZQoaAZHQJcSUQrc0tRoB03oA2gIR0CshlEcsDnvdX2UKGgGR0CYC9LFn7HiaAdN6ANoCEdArIotr9ETg3V9lChoBkdAlvvDImw7kmgHTegDaAhHQKyP1AnDziF1fZQoaAZHQJV7EyULUkRoB03oA2gIR0CslZSU1Q67dX2UKGgGR0CXEE+gUUO/aAdN6ANoCEdArJYsPMB6r3V9lChoBkdAlC59KZlWfmgHTegDaAhHQKyYqD15B1N1fZQoaAZHQIuxHAZbY9RoB03oA2gIR0CsnCOKwY+CdX2UKGgGR0CTAgB2OhkBaAdN6ANoCEdArKId8/lhgHV9lChoBkdAkLSkcGTs6mgHTegDaAhHQKyivtv4ubt1fZQoaAZHQJCMVmUW2w5oB03oA2gIR0CspgkCV8kVdX2UKGgGR0CVANWfK6nSaAdN6ANoCEdArK2JSP2f03V9lChoBkdAl1XTurp7kWgHTegDaAhHQKy3NzPrv9d1fZQoaAZHQJZ5TXoTwlVoB03oA2gIR0Cst9b+tKZldX2UKGgGR0CVq6tMfzSUaAdN6ANoCEdArLpIYxcmjXV9lChoBkdAmXxQuVX3g2gHTegDaAhHQKy9xMwlByF1fZQoaAZHQJKp/thNM49oB03oA2gIR0Csw5KhtcfOdX2UKGgGR0CSulfrKNhmaAdN6ANoCEdArMQyeNDMNnV9lChoBkdAlfndKdxyXGgHTegDaAhHQKzHFpUxVQ11fZQoaAZHQJYtESnLq2VoB03oA2gIR0CszJv3JxNqdX2UKGgGR0CS+6TeO4oaaAdN6ANoCEdArNQ7e/Ho5nV9lChoBkdAlnhgkxASnWgHTegDaAhHQKzU3w8W9Dh1fZQoaAZHQJfTGNJe3QVoB03oA2gIR0Cs10mCROk+dX2UKGgGR0CVVkcFyJbdaAdN6ANoCEdArNrBeTmnwXV9lChoBkdAlaxJ5NXYDmgHTegDaAhHQKzgjai9Iwx1fZQoaAZHQJdHqo5xR2toB03oA2gIR0Cs4SplrdnCdX2UKGgGR0CXL4FBppN9aAdN6ANoCEdArOOi7Ciyp3V9lChoBkdAlIlIDxLCemgHTegDaAhHQKzoLfjS5RV1fZQoaAZHQJSIeVqveP9oB03oA2gIR0Cs8YRx1gYxdX2UKGgGR0CWPJUSIxgzaAdN6ANoCEdArPIjdSEUTXV9lChoBkdAkN5cmBvrGGgHTegDaAhHQKz0jMg2ZRd1fZQoaAZHQJV5RnkDIR1oB03oA2gIR0Cs9/apgkTpdX2UKGgGR0CVt7eqaPS2aAdN6ANoCEdArP21Tzd1uHV9lChoBkdAmOhPVqesgmgHTegDaAhHQKz+U5UcXFd1fZQoaAZHQJKrW1E3KjloB03oA2gIR0CtAMM+FDfFdX2UKGgGR0CS3lObRWtEaAdN6ANoCEdArQRIsunMuHV9lChoBkdAmD7+XZ5AyGgHTegDaAhHQK0NQlQdjoZ1fZQoaAZHQJaoM31jAi5oB03oA2gIR0CtDlFT3qRmdX2UKGgGR0CBqpHuqm0maAdN6ANoCEdArRGA4+8oQXV9lChoBkdAlbLDsIE8rGgHTegDaAhHQK0U+1pCa7V1fZQoaAZHQJHr/3lCCz1oB03oA2gIR0CtGw/nnuAqdX2UKGgGR0CSiQ0dzXBhaAdN6ANoCEdArRu8Pz4DcXV9lChoBkdAkNLdi+cpb2gHTegDaAhHQK0eTTnaFmF1fZQoaAZHQJYcMUtZmqZoB03oA2gIR0CtIcLKmsNldX2UKGgGR0CQIGhqCYkWaAdN6ANoCEdArSnqiXY153V9lChoBkdAkbunxaxHG2gHTegDaAhHQK0q9ye7L+x1fZQoaAZHQJH+FLUTcqRoB03oA2gIR0CtLxvfj0cwdX2UKGgGR0CRAV3HaN+9aAdN6ANoCEdArTLbHEMspXV9lChoBkdAkoJBtpEhJWgHTegDaAhHQK04sO+ZgG91fZQoaAZHQJUDztsvZh9oB03oA2gIR0CtOUtV7x/edX2UKGgGR0CUIeQO4G2UaAdN6ANoCEdArTvZL7Gec3V9lChoBkdAlAQLL2YfGWgHTegDaAhHQK0/Uf/WDpV1fZQoaAZHQJTiaFK02LpoB03oA2gIR0CtRhPe54GEdX2UKGgGR0CR22aZQYUGaAdN6ANoCEdArUdEit7rs3V9lChoBkdAlEGbGrCFbmgHTegDaAhHQK1LRn27FsJ1fZQoaAZHQJW+UraufVZoB03oA2gIR0CtUF4Ajps5dX2UKGgGR0CNt+uKXOW0aAdN6ANoCEdArVZ6v/zasnV9lChoBkdAliF2kFfReGgHTegDaAhHQK1XGcZLqUx1fZQoaAZHQJWsYRtgrpdoB03oA2gIR0CtWZa1stTUdX2UKGgGR0CYjWiSJTESaAdN6ANoCEdArV0J6+nIhnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8b3045b2b74fc31de50b8b519094f036c3c85af36252403ee86868412989b3d
|
3 |
+
size 1170659
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1777.3227258703876, "std_reward": 23.415054413511246, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T05:17:06.730300"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bfc383bd796835f9fc2a0b3c20705370b7dfb52e57f397f40334344b0af9528a
|
3 |
+
size 2136
|