{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc075859740>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 49664964, "_total_timesteps": 100000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683712405772363271, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYi9ob21lL2tlbi9hbmFjb25kYTMvZW52cy9odWdnaW5nZmFjZS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxiL2hvbWUva2VuL2FuYWNvbmRhMy9lbnZzL2h1Z2dpbmdmYWNlL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAxqvj61WWG6uQajPt1VUD+bIBG/zl+hP563kr4525q/EMZfPwKdrD+1aNA/hDIpv4hyPT0kCKc+N481P6w6qDxNLBq99/RGv/iOCL/JPys+j1pLP+cX9D7R0m8+o5s8vx2WdT+H4Yk+uzFrP+Y/6763yTy/JRLGPjJtQj8eHwhA0jSDv3ajBMDAOhM9dZ8HQNX7tr+QEdQ+JRMDwJjRrT/YFlc/d9QnP3PVlb+dfJQ/RsvHP8d4czkSwcG+V59cv4Hd3z7fKGU8abV0Pvt2UkB2bYW/h+GJPrhSi7/mP+u+mImWv0yFwzx++bI+MIDUP2qCLL94UEW+7cZYPXPizb3SbbO/MXzXPt/lurm6iAlAuJ5KPqYHij5hlT8/FgzAP8fnmz8HJoW/+tgTv5XNoL+FKj0/wXvDv4FblT/kQG0/dm2Fv4fhiT64Uou/5j/rvpOIbT9CmyQ+NKEDP6/bjj5H/QS/VgUOvtl3G7+b9Du/q4+jPw9cCr8m35O+7E8Yv6F0Yr4ZvNW+djShPj3skb+cmra/yW+IPf7MST/lydY+x4BtPmuzgj4GuS6/fXLWvh2WdT+H4Yk+uzFrP+Y/676UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA0wSq2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAg8RVPAAAAACtoPK/AAAAAFTU270AAAAAgt/5PwAAAAD9mUg9AAAAAHhc6T8AAAAAjDM8PQAAAAAopuK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj0m4tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKAQ6j0AAAAAS/L2vwAAAAAirFe9AAAAALS92z8AAAAACd4NvgAAAACq4d4/AAAAAMV1c70AAAAA+xH0vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALzVujYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICalBG+AAAAANI37b8AAAAAA0RgvQAAAACUjOk/AAAAAMrbWz0AAAAAHJLgPwAAAAA289y9AAAAAPPm9L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABY1Jk1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAGuWlvQAAAABm8d2/AAAAADO3xr0AAAAAM2TvPwAAAAB9tgM+AAAAAHIH9z8AAAAACt5zPQAAAACKXeK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.5033504, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKF/pzo2XLOMAWyUTegDjAF0lEdA65oRWxhUi3V9lChoBkdAocXsXN1QqWgHTegDaAhHQOuaK256MR91fZQoaAZHQKAz5IHTqjdoB03oA2gIR0Drmm1FAmiQdX2UKGgGR0Cg8qYISlFdaAdN6ANoCEdA65p5ZEDyOXV9lChoBkdAokDVq33HrGgHTegDaAhHQOuapHQWvbJ1fZQoaAZHQKFs93Gn4whoB03oA2gIR0Drmr6REnb7dX2UKGgGR0CgFvVUdaMaaAdN6ANoCEdA65sAgl4TsnV9lChoBkdAoicmx0MgEGgHTegDaAhHQOubCv8hs691fZQoaAZHQKHhEf/3nIRoB03oA2gIR0DrmzdkT6BRdX2UKGgGR0ChlkyowVTKaAdN6ANoCEdA65tR1SOzY3V9lChoBkdAof6DtLL6lGgHTegDaAhHQOubl3YnOSp1fZQoaAZHQKIey4Bmwq1oB03oA2gIR0Drm6JPX05EdX2UKGgGR0CiU4ZprULEaAdN6ANoCEdA65vNQFTvRnV9lChoBkdAoVj5WYF7lmgHTegDaAhHQOub56HIp6R1fZQoaAZHQKHT7GPPszFoB03oA2gIR0DrnCrRJEpidX2UKGgGR0Ch+lZzgdfcaAdN6ANoCEdA65w22ll9SnV9lChoBkdAn8hTGgi/wmgHTegDaAhHQOucZZCx/ut1fZQoaAZHQKEr0koF3ZBoB03oA2gIR0DrnIAHHmzTdX2UKGgGR0Ch6s/7SApbaAdN6ANoCEdA65zUbnX/YXV9lChoBkdAoWDJmwqy4WgHTegDaAhHQOuc32y9mHx1fZQoaAZHQKF6krhisn1oB03oA2gIR0DrnRBfOUt7dX2UKGgGR0CgtgPZZjhDaAdN6ANoCEdA650sGaYu03V9lChoBkdAlDclcQiA2GgHTegDaAhHQOudcKidrft1fZQoaAZHQKFOsrGR3eNoB03oA2gIR0DrnXwuyNXHdX2UKGgGR0CiHzoA4n4PaAdN6ANoCEdA652rhC2MKnV9lChoBkdAoiI0zGgi/2gHTegDaAhHQOudyDT+ee51fZQoaAZHQKGCutNBWxRoB03oA2gIR0Drng/8MuvmdX2UKGgGR0Cf9rhzvJA/aAdN6ANoCEdA654b/GlyinV9lChoBkdAocqeb1AZ9GgHTegDaAhHQOueSxaxHG11fZQoaAZHQKJmm2VE/jdoB03oA2gIR0DrnmXg4wRHdX2UKGgGR0Ch0kwbEP1+aAdN6ANoCEdA656l8QqZt3V9lChoBkdAoc1TcTJyQ2gHTegDaAhHQOuesN54W1t1fZQoaAZHQKG1zAv+OwRoB03oA2gIR0Drnt21IAfddX2UKGgGR0CgGZscABDHaAdN6ANoCEdA658HLRSgoXV9lChoBkdAohjVxdY4hmgHTegDaAhHQOufixttQ9B1fZQoaAZHQKB5GofjjrBoB03oA2gIR0Drn6IkM1CPdX2UKGgGR0CiTPEAggX/aAdN6ANoCEdA65/3+XiR4nV9lChoBkdAoUS1hXr+pGgHTegDaAhHQOugLg0GeMB1fZQoaAZHQKBTmONo8IRoB03oA2gIR0DroLLqi48VdX2UKGgGR0Cgs1Jqh11XaAdN6ANoCEdA66DLI8QqZ3V9lChoBkdAohqOxbB42WgHTegDaAhHQOuhIjpC8e11fZQoaAZHQKHxhZ2ZAptoB03oA2gIR0DroVvXoTwldX2UKGgGR0CiP7raEi+taAdN6ANoCEdA66HiOKoAGXV9lChoBkdAoBBXL9uP3mgHTegDaAhHQOuh9/RkVet1fZQoaAZHQKD5Fdmg8KZoB03oA2gIR0Drokoxzq8ldX2UKGgGR0CitEneaa1DaAdN6ANoCEdA66JydFvyb3V9lChoBkdAogSnYraufWgHTegDaAhHQOuiuPYtg8d1fZQoaAZHQKHTaoTfzjFoB03oA2gIR0DrosQjopx4dX2UKGgGR0CiKPxdY4hmaAdN6ANoCEdA66Lw9I5HVnV9lChoBkdAoNYj/p+tsGgHTegDaAhHQOujDHRqoIh1fZQoaAZHQKD2920zCUJoB03oA2gIR0Dro1OXokiVdX2UKGgGR0Chym+yJKraaAdN6ANoCEdA66NfYG+sYHV9lChoBkdAoV0xgssg+2gHTegDaAhHQOujirY/Vy51fZQoaAZHQKI6X2WY4Q1oB03oA2gIR0Dro6ZDw6QvdX2UKGgGR0ChmR5mAbyZaAdN6ANoCEdA66Pufm9xqHV9lChoBkdAoZjM1O0sv2gHTegDaAhHQOuj+U5U96l1fZQoaAZHQKCjXwo9cKRoB03oA2gIR0DrpCTwiqyXdX2UKGgGR0ChYU+ZgG8maAdN6ANoCEdA66Q/PTodMnV9lChoBkdAoloSzPa+OGgHTegDaAhHQOukgtUp/gB1fZQoaAZHQKGVfsTFl05oB03oA2gIR0DrpI2S5AhTdX2UKGgGR0Ch+3eA/cFhaAdN6ANoCEdA66S9BRQ793V9lChoBkdAoZlveSB9TmgHTegDaAhHQOuk2L1dxAB1fZQoaAZHQKF9Tag2609oB03oA2gIR0DrpRyt4A0bdX2UKGgGR0Ch2pPduYQbaAdN6ANoCEdA66UpQZGayHV9lChoBkdAoQqK0v4/NmgHTegDaAhHQOulVzK5kLB1fZQoaAZHQKEJxnJ1aGJoB03oA2gIR0DrpXUiWVu8dX2UKGgGR0Ch7TeYtxuLaAdN6ANoCEdA66W9j63y7XV9lChoBkdAoIg/pt78emgHTegDaAhHQOulyK4axX51fZQoaAZHQKJFYFdszl9oB03oA2gIR0DrpfZBHkLhdX2UKGgGR0CiQNlf7aZhaAdN6ANoCEdA66YSDUd7wHV9lChoBkdAoTK4ZXMhYGgHTegDaAhHQOumWDBfrrx1fZQoaAZHQKG4akv9LpRoB03oA2gIR0DrpmU+7lJZdX2UKGgGR0Ch6OdsBQvYaAdN6ANoCEdA66aPu5rgwXV9lChoBkdAoQRPJkoWpWgHTegDaAhHQOumqf95yEN1fZQoaAZHQKDrcgf2bodoB03oA2gIR0DrputuejEfdX2UKGgGR0Chj16AFxGUaAdN6ANoCEdA66b3/nnuA3V9lChoBkdAodTrcj7hvWgHTegDaAhHQOunJgRTS9d1fZQoaAZHQKGws5SWJJpoB03oA2gIR0Drp0G9alk6dX2UKGgGR0ChKY/1YhdMaAdN6ANoCEdA66eCl/6O53V9lChoBkdAoWbApvxYrGgHTegDaAhHQOunjTu+h5B1fZQoaAZHQKF3GVpKzzFoB03oA2gIR0Drp7d6XSjQdX2UKGgGR0CiCqR8UmD2aAdN6ANoCEdA66fQrWAf+3V9lChoBkdAoIpHGdZq22gHTegDaAhHQOuoFZEhJRR1fZQoaAZHQKHR00BwMphoB03oA2gIR0DrqCB7HhjwdX2UKGgGR0Ch9Q5OzposaAdN6ANoCEdA66h34nfEXXV9lChoBkdAoafZtelbeWgHTegDaAhHQOuosyKR+0B1fZQoaAZHQKGog/dIoVpoB03oA2gIR0DrqU92ZApsdX2UKGgGR0CiCMwPy08eaAdN6ANoCEdA66lp5uqFRHV9lChoBkdAmNmNHH3lCGgHTegDaAhHQOupycVN5+p1fZQoaAZHQKE7xkf9xZNoB03oA2gIR0Drqf5ceKbbdX2UKGgGR0Cf7c1xKg7HaAdN6ANoCEdA66qMV/Ue+3V9lChoBkdAobvbaAWi12gHTegDaAhHQOuqo6asp5N1fZQoaAZHQKFFt+EytV9oB03oA2gIR0DrqwoOxSpBdX2UKGgGR0CiMjjh99c9aAdN6ANoCEdA66tCb70nPXV9lChoBkdAoQQ4/TspomgHTegDaAhHQOurz3H1e0J1fZQoaAZHQJ50P0L+glFoB03oA2gIR0Drq+iwIt17dX2UKGgGR0Chqy7TtsvaaAdN6ANoCEdA66xGQsoUjHV9lChoBkdAoSkTkwN9Y2gHTegDaAhHQOusf+aYu011fZQoaAZHQJ52bHYHxBpoB03oA2gIR0DrrQt+az/qdX2UKGgGR0ChBkPUrkKeaAdN6ANoCEdA660k2gFotnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1557880, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2+-x86_64-with-glibc2.31 # 1 SMP Wed May 3 12:00:32 CST 2023", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "False", "Numpy": "1.21.2", "Gym": "0.21.0"}}