Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.00 +/- 1.04
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbd0ba1ca95ee2bdb297aa3a6c7c790facc18d8f1c63a30c9a31b458a0311bad
|
3 |
+
size 107840
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f57bd97ff70>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f57bd981240>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 3727208,
|
23 |
+
"_total_timesteps": 100000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1683789236801735090,
|
28 |
+
"learning_rate": 0.0001,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYi9ob21lL2tlbi9hbmFjb25kYTMvZW52cy9odWdnaW5nZmFjZS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxiL2hvbWUva2VuL2FuYWNvbmRhMy9lbnZzL2h1Z2dpbmdmYWNlL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAphgXv0U2E79/TyY/r1eSvvICtr1L2MI+ID4Bvf6VYz+BWxI/aQaYvlmiIT7bu4E+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIzTIv+TxWr8N4YY/lRwkv3ryAb5P4yI/GtYvP0d5wT/Px4w/Pyo1vy/CsT6VHzY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACmGBe/RTYTv39PJj+41L2/eLRcPkdhBUCvV5K+8gK2vUvYwj64uYa/5XGrP97MDr4gPgG9/pVjP4FbEj+vaMK/rPsOQFIOrL9pBpi+WaIhPtu7gT5E7U2/hBOHPjoZbz2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[-0.59021986 -0.57504684 0.6496505 ]\n [-0.28582522 -0.08887281 0.38055643]\n [-0.03155339 0.88900745 0.57170874]\n [-0.2969239 0.15784587 0.25338635]]",
|
38 |
+
"desired_goal": "[[-1.5640911 -0.85525346 1.053743 ]\n [-0.6410611 -0.12690154 0.63628095]\n [ 0.6868607 1.5115136 1.0998477 ]\n [-0.7076759 0.34718463 0.7114194 ]]",
|
39 |
+
"observation": "[[-0.59021986 -0.57504684 0.6496505 -1.4830542 0.21553218 2.0840623 ]\n [-0.28582522 -0.08887281 0.38055643 -1.0525427 1.3394133 -0.13945338]\n [-0.03155339 0.88900745 0.57170874 -1.5188197 2.2341108 -1.344187 ]\n [-0.2969239 0.15784587 0.25338635 -0.80440164 0.26382077 0.05837367]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAd+QXPTegDr5Tp4c+YGIQPqqwN70wiTY+fsANvslK6z0aBwY92WYKPd0F6D1MLBE8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.03708312 -0.13928305 0.26494846]\n [ 0.14100027 -0.04484621 0.1782577 ]\n [-0.13842961 0.11488874 0.03272162]\n [ 0.03378949 0.11329243 0.00886066]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.962728,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXYjVH2F4BMCUhpRSlIwBbJRLMowBdJRHQMOtufYjB2x1fZQoaAZoCWgPQwibWOAruhUKwJSGlFKUaBVLMmgWR0DDra7Fl05mdX2UKGgGaAloD0MIPrDjv0CQ77+UhpRSlGgVSzJoFkdAw62jzgdfcHV9lChoBmgJaA9DCAN7TKQ0GwXAlIaUUpRoFUsyaBZHQMOtmHP/rB11fZQoaAZoCWgPQwhnnlxTIBMHwJSGlFKUaBVLMmgWR0DDrfFGViWndX2UKGgGaAloD0MIlrTiGwq/DcCUhpRSlGgVSzJoFkdAw63mQbMot3V9lChoBmgJaA9DCH0iT5KuGf+/lIaUUpRoFUsyaBZHQMOt21JUYKp1fZQoaAZoCWgPQwiQSUbOwt4DwJSGlFKUaBVLMmgWR0DDrdABo24vdX2UKGgGaAloD0MIgV1NnrIaAcCUhpRSlGgVSzJoFkdAw64d09yLh3V9lChoBmgJaA9DCL4W9N4Ygve/lIaUUpRoFUsyaBZHQMOuErCWNWF1fZQoaAZoCWgPQwjrjzAMWLLxv5SGlFKUaBVLMmgWR0DDrgfW+XZ5dX2UKGgGaAloD0MI/3kaMEg6+b+UhpRSlGgVSzJoFkdAw638iliz9nV9lChoBmgJaA9DCI4Dr5Y7swDAlIaUUpRoFUsyaBZHQMOuStFa0Qd1fZQoaAZoCWgPQwjHTKJe8On4v5SGlFKUaBVLMmgWR0DDrj+UW2w3dX2UKGgGaAloD0MIYFj+fFvw9b+UhpRSlGgVSzJoFkdAw640ndfsu3V9lChoBmgJaA9DCLQFhNbD9w/AlIaUUpRoFUsyaBZHQMOuKUb1h9d1fZQoaAZoCWgPQwhB1H0AUhvxv5SGlFKUaBVLMmgWR0DDroFNYbKidX2UKGgGaAloD0MI6WM+INAZB8CUhpRSlGgVSzJoFkdAw652HXVbzXV9lChoBmgJaA9DCLK5ap4j8vO/lIaUUpRoFUsyaBZHQMOua0DEFW51fZQoaAZoCWgPQwhHA3gLJGjyv5SGlFKUaBVLMmgWR0DDrmAGr0aqdX2UKGgGaAloD0MIR1UTRN2nAcCUhpRSlGgVSzJoFkdAw660qebut3V9lChoBmgJaA9DCCVbXU4JSALAlIaUUpRoFUsyaBZHQMOuqYB/7SB1fZQoaAZoCWgPQwgU61T5nrEEwJSGlFKUaBVLMmgWR0DDrp6mXPZ7dX2UKGgGaAloD0MIOX8TChFwBMCUhpRSlGgVSzJoFkdAw66TTNMXanV9lChoBmgJaA9DCMcTQZyHMwfAlIaUUpRoFUsyaBZHQMOu4oM8YAN1fZQoaAZoCWgPQwgKgPEMGnoAwJSGlFKUaBVLMmgWR0DDrtdh1DBudX2UKGgGaAloD0MIGm7A54dxEMCUhpRSlGgVSzJoFkdAw67MYRdyDXV9lChoBmgJaA9DCBjRdkzdFf2/lIaUUpRoFUsyaBZHQMOuwQjMV1x1fZQoaAZoCWgPQwiI9xxYjpD4v5SGlFKUaBVLMmgWR0DDrxTQNTcZdX2UKGgGaAloD0MINxjqsMIt8r+UhpRSlGgVSzJoFkdAw68JnlGPP3V9lChoBmgJaA9DCNXOMLWlDgHAlIaUUpRoFUsyaBZHQMOu/qbz9TB1fZQoaAZoCWgPQwjzx7Q2jS0NwJSGlFKUaBVLMmgWR0DDrvNJpWWAdX2UKGgGaAloD0MIPQ6D+SvkBMCUhpRSlGgVSzJoFkdAw68/mYBvJnV9lChoBmgJaA9DCEVKs3kcxv6/lIaUUpRoFUsyaBZHQMOvNG5Dqnp1fZQoaAZoCWgPQwiQhH07iYgDwJSGlFKUaBVLMmgWR0DDrymgxrSFdX2UKGgGaAloD0MIPSe9b3zNAcCUhpRSlGgVSzJoFkdAw68eRgZ0jnV9lChoBmgJaA9DCJLNVfMckfy/lIaUUpRoFUsyaBZHQMOvbBUipvR1fZQoaAZoCWgPQwgCu5o8ZTXqv5SGlFKUaBVLMmgWR0DDr2DeyiVTdX2UKGgGaAloD0MII0p7gy9sA8CUhpRSlGgVSzJoFkdAw69V4C6pYXV9lChoBmgJaA9DCCXqBZ/mJBHAlIaUUpRoFUsyaBZHQMOvSsIeHSF1fZQoaAZoCWgPQwiES8ecZ4wIwJSGlFKUaBVLMmgWR0DDr6AUlAu7dX2UKGgGaAloD0MInPwWnSxVCMCUhpRSlGgVSzJoFkdAw6+VABT4tnV9lChoBmgJaA9DCK2/JQD/lPS/lIaUUpRoFUsyaBZHQMOvif95yEN1fZQoaAZoCWgPQwhN2ekHdZH8v5SGlFKUaBVLMmgWR0DDr36ol2NedX2UKGgGaAloD0MIbSBdbFpp+7+UhpRSlGgVSzJoFkdAw6/OxtYSx3V9lChoBmgJaA9DCHsxlBPtKv+/lIaUUpRoFUsyaBZHQMOvw5AQg9x1fZQoaAZoCWgPQwgDkxtF1hryv5SGlFKUaBVLMmgWR0DDr7iW/rSmdX2UKGgGaAloD0MIezGUE+0q+L+UhpRSlGgVSzJoFkdAw6+tPHDJl3V9lChoBmgJaA9DCKn1fqMdN+K/lIaUUpRoFUsyaBZHQMOv+rJSzgN1fZQoaAZoCWgPQwhaSpaTUPr1v5SGlFKUaBVLMmgWR0DDr++AI6bOdX2UKGgGaAloD0MIWFTE6SRb/b+UhpRSlGgVSzJoFkdAw6/khrWRR3V9lChoBmgJaA9DCFxxcVRuovS/lIaUUpRoFUsyaBZHQMOv2S9mHxl1fZQoaAZoCWgPQwgbKzHPStoEwJSGlFKUaBVLMmgWR0DDsCNsguAadX2UKGgGaAloD0MI4gFlU66QB8CUhpRSlGgVSzJoFkdAw7AYM98qnXV9lChoBmgJaA9DCGXh62tdSgfAlIaUUpRoFUsyaBZHQMOwDTp5eJJ1fZQoaAZoCWgPQwg+0AoMWd0IwJSGlFKUaBVLMmgWR0DDsAHwd8zAdX2UKGgGaAloD0MIGF5J8lx/AsCUhpRSlGgVSzJoFkdAw7BNxqfvnnV9lChoBmgJaA9DCG5oyk4/CAbAlIaUUpRoFUsyaBZHQMOwQpmukk91fZQoaAZoCWgPQwiMTMCvkeT3v5SGlFKUaBVLMmgWR0DDsDehTOxCdX2UKGgGaAloD0MI98snK4ar+r+UhpRSlGgVSzJoFkdAw7AsR5kbxXV9lChoBmgJaA9DCK2FWWjndAXAlIaUUpRoFUsyaBZHQMOweLpqynl1fZQoaAZoCWgPQwj+17lpM64NwJSGlFKUaBVLMmgWR0DDsG2JDVpcdX2UKGgGaAloD0MI5sx2hT7Y6r+UhpRSlGgVSzJoFkdAw7BijFAE+3V9lChoBmgJaA9DCJDaxMn9jgnAlIaUUpRoFUsyaBZHQMOwVzP8hs91fZQoaAZoCWgPQwizmq4nui7qv5SGlFKUaBVLMmgWR0DDsKqoqCpWdX2UKGgGaAloD0MIv4I0Y9HEEMCUhpRSlGgVSzJoFkdAw7CfdHlOoHV9lChoBmgJaA9DCDQw8rImlg3AlIaUUpRoFUsyaBZHQMOwlJmmLtN1fZQoaAZoCWgPQwjDZoALsmX8v5SGlFKUaBVLMmgWR0DDsIlkFwDOdX2UKGgGaAloD0MIqYb9nlinBMCUhpRSlGgVSzJoFkdAw7DYgUUO/nV9lChoBmgJaA9DCF+aIsDpHQbAlIaUUpRoFUsyaBZHQMOwzU+9rXV1fZQoaAZoCWgPQwgAqOLGLQYGwJSGlFKUaBVLMmgWR0DDsMJbW3BpdX2UKGgGaAloD0MIVcA9z58WB8CUhpRSlGgVSzJoFkdAw7C3BjWkJ3V9lChoBmgJaA9DCLnF/NzQVAzAlIaUUpRoFUsyaBZHQMOxCcKgIyF1fZQoaAZoCWgPQwjyzTY3pifjv5SGlFKUaBVLMmgWR0DDsP6ScLBsdX2UKGgGaAloD0MIMZkqGJWU87+UhpRSlGgVSzJoFkdAw7DzmHP/rHV9lChoBmgJaA9DCN3rpL4s7fi/lIaUUpRoFUsyaBZHQMOw6EFwDNh1fZQoaAZoCWgPQwjdQ8L3/iYGwJSGlFKUaBVLMmgWR0DDsT0fs/pudX2UKGgGaAloD0MIbvjddMtOAsCUhpRSlGgVSzJoFkdAw7Ex9Dx9X3V9lChoBmgJaA9DCFbSim8oPArAlIaUUpRoFUsyaBZHQMOxJvwmVqx1fZQoaAZoCWgPQwifIRyz7Mn2v5SGlFKUaBVLMmgWR0DDsRunXNC7dX2UKGgGaAloD0MIAKq4cYs5BMCUhpRSlGgVSzJoFkdAw7FnY5ksjHV9lChoBmgJaA9DCLOXbaetMQPAlIaUUpRoFUsyaBZHQMOxXCswL3N1fZQoaAZoCWgPQwjh0Fs8vKfxv5SGlFKUaBVLMmgWR0DDsVEpobn6dX2UKGgGaAloD0MIxeV4BaKn/b+UhpRSlGgVSzJoFkdAw7FFz7MxGnV9lChoBmgJaA9DCEj7H2CtWvW/lIaUUpRoFUsyaBZHQMOxl+DWbw11fZQoaAZoCWgPQwiOy7ipgab6v5SGlFKUaBVLMmgWR0DDsYywjdHldX2UKGgGaAloD0MI/rRRnQ4k9r+UhpRSlGgVSzJoFkdAw7GB26ClJ3V9lChoBmgJaA9DCHWxaaUQCAXAlIaUUpRoFUsyaBZHQMOxdoJ7b+N1fZQoaAZoCWgPQwjiAWVTrvACwJSGlFKUaBVLMmgWR0DDsc5fOUt7dX2UKGgGaAloD0MIzqeOVUqPAsCUhpRSlGgVSzJoFkdAw7HDLeQ+2XV9lChoBmgJaA9DCC8VG/M6YgbAlIaUUpRoFUsyaBZHQMOxuD0Dlo11fZQoaAZoCWgPQwirz9VW7C8EwJSGlFKUaBVLMmgWR0DDsa0DKYAsdX2UKGgGaAloD0MIfLd546RwDsCUhpRSlGgVSzJoFkdAw7H49/SYxHV9lChoBmgJaA9DCFN40Oy6t+y/lIaUUpRoFUsyaBZHQMOx7cYIjW11fZQoaAZoCWgPQwgWFAZlGo0JwJSGlFKUaBVLMmgWR0DDseLNdJJ5dX2UKGgGaAloD0MIOZ1kq8tZEcCUhpRSlGgVSzJoFkdAw7HXdXT3I3V9lChoBmgJaA9DCPq2YKkuoP+/lIaUUpRoFUsyaBZHQMOyI1S4vvl1fZQoaAZoCWgPQwh5WRMLfCUKwJSGlFKUaBVLMmgWR0DDshgvSMLndX2UKGgGaAloD0MI7j8yHTo9+L+UhpRSlGgVSzJoFkdAw7INRTCLuXV9lChoBmgJaA9DCO6yX3e68/m/lIaUUpRoFUsyaBZHQMOyAfKISDh1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 236360,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8db2b23787189738cdb2cd7c582421a1df1db026ae65b2754fd14cd966b1ada5
|
3 |
+
size 44542
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e865af0dacaca90f7a08954c4240aba7fe7201bb8112298ecc82bb996c8059e4
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.90.1-microsoft-standard-WSL2+-x86_64-with-glibc2.31 # 1 SMP Wed May 3 12:00:32 CST 2023
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 1.11.0+cu102
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.21.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f57bd97ff70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f57bd981240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 3727208, "_total_timesteps": 100000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683789236801735090, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYi9ob21lL2tlbi9hbmFjb25kYTMvZW52cy9odWdnaW5nZmFjZS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxiL2hvbWUva2VuL2FuYWNvbmRhMy9lbnZzL2h1Z2dpbmdmYWNlL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAphgXv0U2E79/TyY/r1eSvvICtr1L2MI+ID4Bvf6VYz+BWxI/aQaYvlmiIT7bu4E+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIzTIv+TxWr8N4YY/lRwkv3ryAb5P4yI/GtYvP0d5wT/Px4w/Pyo1vy/CsT6VHzY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACmGBe/RTYTv39PJj+41L2/eLRcPkdhBUCvV5K+8gK2vUvYwj64uYa/5XGrP97MDr4gPgG9/pVjP4FbEj+vaMK/rPsOQFIOrL9pBpi+WaIhPtu7gT5E7U2/hBOHPjoZbz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.59021986 -0.57504684 0.6496505 ]\n [-0.28582522 -0.08887281 0.38055643]\n [-0.03155339 0.88900745 0.57170874]\n [-0.2969239 0.15784587 0.25338635]]", "desired_goal": "[[-1.5640911 -0.85525346 1.053743 ]\n [-0.6410611 -0.12690154 0.63628095]\n [ 0.6868607 1.5115136 1.0998477 ]\n [-0.7076759 0.34718463 0.7114194 ]]", "observation": "[[-0.59021986 -0.57504684 0.6496505 -1.4830542 0.21553218 2.0840623 ]\n [-0.28582522 -0.08887281 0.38055643 -1.0525427 1.3394133 -0.13945338]\n [-0.03155339 0.88900745 0.57170874 -1.5188197 2.2341108 -1.344187 ]\n [-0.2969239 0.15784587 0.25338635 -0.80440164 0.26382077 0.05837367]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAd+QXPTegDr5Tp4c+YGIQPqqwN70wiTY+fsANvslK6z0aBwY92WYKPd0F6D1MLBE8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03708312 -0.13928305 0.26494846]\n [ 0.14100027 -0.04484621 0.1782577 ]\n [-0.13842961 0.11488874 0.03272162]\n [ 0.03378949 0.11329243 0.00886066]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.962728, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXYjVH2F4BMCUhpRSlIwBbJRLMowBdJRHQMOtufYjB2x1fZQoaAZoCWgPQwibWOAruhUKwJSGlFKUaBVLMmgWR0DDra7Fl05mdX2UKGgGaAloD0MIPrDjv0CQ77+UhpRSlGgVSzJoFkdAw62jzgdfcHV9lChoBmgJaA9DCAN7TKQ0GwXAlIaUUpRoFUsyaBZHQMOtmHP/rB11fZQoaAZoCWgPQwhnnlxTIBMHwJSGlFKUaBVLMmgWR0DDrfFGViWndX2UKGgGaAloD0MIlrTiGwq/DcCUhpRSlGgVSzJoFkdAw63mQbMot3V9lChoBmgJaA9DCH0iT5KuGf+/lIaUUpRoFUsyaBZHQMOt21JUYKp1fZQoaAZoCWgPQwiQSUbOwt4DwJSGlFKUaBVLMmgWR0DDrdABo24vdX2UKGgGaAloD0MIgV1NnrIaAcCUhpRSlGgVSzJoFkdAw64d09yLh3V9lChoBmgJaA9DCL4W9N4Ygve/lIaUUpRoFUsyaBZHQMOuErCWNWF1fZQoaAZoCWgPQwjrjzAMWLLxv5SGlFKUaBVLMmgWR0DDrgfW+XZ5dX2UKGgGaAloD0MI/3kaMEg6+b+UhpRSlGgVSzJoFkdAw638iliz9nV9lChoBmgJaA9DCI4Dr5Y7swDAlIaUUpRoFUsyaBZHQMOuStFa0Qd1fZQoaAZoCWgPQwjHTKJe8On4v5SGlFKUaBVLMmgWR0DDrj+UW2w3dX2UKGgGaAloD0MIYFj+fFvw9b+UhpRSlGgVSzJoFkdAw640ndfsu3V9lChoBmgJaA9DCLQFhNbD9w/AlIaUUpRoFUsyaBZHQMOuKUb1h9d1fZQoaAZoCWgPQwhB1H0AUhvxv5SGlFKUaBVLMmgWR0DDroFNYbKidX2UKGgGaAloD0MI6WM+INAZB8CUhpRSlGgVSzJoFkdAw652HXVbzXV9lChoBmgJaA9DCLK5ap4j8vO/lIaUUpRoFUsyaBZHQMOua0DEFW51fZQoaAZoCWgPQwhHA3gLJGjyv5SGlFKUaBVLMmgWR0DDrmAGr0aqdX2UKGgGaAloD0MIR1UTRN2nAcCUhpRSlGgVSzJoFkdAw660qebut3V9lChoBmgJaA9DCCVbXU4JSALAlIaUUpRoFUsyaBZHQMOuqYB/7SB1fZQoaAZoCWgPQwgU61T5nrEEwJSGlFKUaBVLMmgWR0DDrp6mXPZ7dX2UKGgGaAloD0MIOX8TChFwBMCUhpRSlGgVSzJoFkdAw66TTNMXanV9lChoBmgJaA9DCMcTQZyHMwfAlIaUUpRoFUsyaBZHQMOu4oM8YAN1fZQoaAZoCWgPQwgKgPEMGnoAwJSGlFKUaBVLMmgWR0DDrtdh1DBudX2UKGgGaAloD0MIGm7A54dxEMCUhpRSlGgVSzJoFkdAw67MYRdyDXV9lChoBmgJaA9DCBjRdkzdFf2/lIaUUpRoFUsyaBZHQMOuwQjMV1x1fZQoaAZoCWgPQwiI9xxYjpD4v5SGlFKUaBVLMmgWR0DDrxTQNTcZdX2UKGgGaAloD0MINxjqsMIt8r+UhpRSlGgVSzJoFkdAw68JnlGPP3V9lChoBmgJaA9DCNXOMLWlDgHAlIaUUpRoFUsyaBZHQMOu/qbz9TB1fZQoaAZoCWgPQwjzx7Q2jS0NwJSGlFKUaBVLMmgWR0DDrvNJpWWAdX2UKGgGaAloD0MIPQ6D+SvkBMCUhpRSlGgVSzJoFkdAw68/mYBvJnV9lChoBmgJaA9DCEVKs3kcxv6/lIaUUpRoFUsyaBZHQMOvNG5Dqnp1fZQoaAZoCWgPQwiQhH07iYgDwJSGlFKUaBVLMmgWR0DDrymgxrSFdX2UKGgGaAloD0MIPSe9b3zNAcCUhpRSlGgVSzJoFkdAw68eRgZ0jnV9lChoBmgJaA9DCJLNVfMckfy/lIaUUpRoFUsyaBZHQMOvbBUipvR1fZQoaAZoCWgPQwgCu5o8ZTXqv5SGlFKUaBVLMmgWR0DDr2DeyiVTdX2UKGgGaAloD0MII0p7gy9sA8CUhpRSlGgVSzJoFkdAw69V4C6pYXV9lChoBmgJaA9DCCXqBZ/mJBHAlIaUUpRoFUsyaBZHQMOvSsIeHSF1fZQoaAZoCWgPQwiES8ecZ4wIwJSGlFKUaBVLMmgWR0DDr6AUlAu7dX2UKGgGaAloD0MInPwWnSxVCMCUhpRSlGgVSzJoFkdAw6+VABT4tnV9lChoBmgJaA9DCK2/JQD/lPS/lIaUUpRoFUsyaBZHQMOvif95yEN1fZQoaAZoCWgPQwhN2ekHdZH8v5SGlFKUaBVLMmgWR0DDr36ol2NedX2UKGgGaAloD0MIbSBdbFpp+7+UhpRSlGgVSzJoFkdAw6/OxtYSx3V9lChoBmgJaA9DCHsxlBPtKv+/lIaUUpRoFUsyaBZHQMOvw5AQg9x1fZQoaAZoCWgPQwgDkxtF1hryv5SGlFKUaBVLMmgWR0DDr7iW/rSmdX2UKGgGaAloD0MIezGUE+0q+L+UhpRSlGgVSzJoFkdAw6+tPHDJl3V9lChoBmgJaA9DCKn1fqMdN+K/lIaUUpRoFUsyaBZHQMOv+rJSzgN1fZQoaAZoCWgPQwhaSpaTUPr1v5SGlFKUaBVLMmgWR0DDr++AI6bOdX2UKGgGaAloD0MIWFTE6SRb/b+UhpRSlGgVSzJoFkdAw6/khrWRR3V9lChoBmgJaA9DCFxxcVRuovS/lIaUUpRoFUsyaBZHQMOv2S9mHxl1fZQoaAZoCWgPQwgbKzHPStoEwJSGlFKUaBVLMmgWR0DDsCNsguAadX2UKGgGaAloD0MI4gFlU66QB8CUhpRSlGgVSzJoFkdAw7AYM98qnXV9lChoBmgJaA9DCGXh62tdSgfAlIaUUpRoFUsyaBZHQMOwDTp5eJJ1fZQoaAZoCWgPQwg+0AoMWd0IwJSGlFKUaBVLMmgWR0DDsAHwd8zAdX2UKGgGaAloD0MIGF5J8lx/AsCUhpRSlGgVSzJoFkdAw7BNxqfvnnV9lChoBmgJaA9DCG5oyk4/CAbAlIaUUpRoFUsyaBZHQMOwQpmukk91fZQoaAZoCWgPQwiMTMCvkeT3v5SGlFKUaBVLMmgWR0DDsDehTOxCdX2UKGgGaAloD0MI98snK4ar+r+UhpRSlGgVSzJoFkdAw7AsR5kbxXV9lChoBmgJaA9DCK2FWWjndAXAlIaUUpRoFUsyaBZHQMOweLpqynl1fZQoaAZoCWgPQwj+17lpM64NwJSGlFKUaBVLMmgWR0DDsG2JDVpcdX2UKGgGaAloD0MI5sx2hT7Y6r+UhpRSlGgVSzJoFkdAw7BijFAE+3V9lChoBmgJaA9DCJDaxMn9jgnAlIaUUpRoFUsyaBZHQMOwVzP8hs91fZQoaAZoCWgPQwizmq4nui7qv5SGlFKUaBVLMmgWR0DDsKqoqCpWdX2UKGgGaAloD0MIv4I0Y9HEEMCUhpRSlGgVSzJoFkdAw7CfdHlOoHV9lChoBmgJaA9DCDQw8rImlg3AlIaUUpRoFUsyaBZHQMOwlJmmLtN1fZQoaAZoCWgPQwjDZoALsmX8v5SGlFKUaBVLMmgWR0DDsIlkFwDOdX2UKGgGaAloD0MIqYb9nlinBMCUhpRSlGgVSzJoFkdAw7DYgUUO/nV9lChoBmgJaA9DCF+aIsDpHQbAlIaUUpRoFUsyaBZHQMOwzU+9rXV1fZQoaAZoCWgPQwgAqOLGLQYGwJSGlFKUaBVLMmgWR0DDsMJbW3BpdX2UKGgGaAloD0MIVcA9z58WB8CUhpRSlGgVSzJoFkdAw7C3BjWkJ3V9lChoBmgJaA9DCLnF/NzQVAzAlIaUUpRoFUsyaBZHQMOxCcKgIyF1fZQoaAZoCWgPQwjyzTY3pifjv5SGlFKUaBVLMmgWR0DDsP6ScLBsdX2UKGgGaAloD0MIMZkqGJWU87+UhpRSlGgVSzJoFkdAw7DzmHP/rHV9lChoBmgJaA9DCN3rpL4s7fi/lIaUUpRoFUsyaBZHQMOw6EFwDNh1fZQoaAZoCWgPQwjdQ8L3/iYGwJSGlFKUaBVLMmgWR0DDsT0fs/pudX2UKGgGaAloD0MIbvjddMtOAsCUhpRSlGgVSzJoFkdAw7Ex9Dx9X3V9lChoBmgJaA9DCFbSim8oPArAlIaUUpRoFUsyaBZHQMOxJvwmVqx1fZQoaAZoCWgPQwifIRyz7Mn2v5SGlFKUaBVLMmgWR0DDsRunXNC7dX2UKGgGaAloD0MIAKq4cYs5BMCUhpRSlGgVSzJoFkdAw7FnY5ksjHV9lChoBmgJaA9DCLOXbaetMQPAlIaUUpRoFUsyaBZHQMOxXCswL3N1fZQoaAZoCWgPQwjh0Fs8vKfxv5SGlFKUaBVLMmgWR0DDsVEpobn6dX2UKGgGaAloD0MIxeV4BaKn/b+UhpRSlGgVSzJoFkdAw7FFz7MxGnV9lChoBmgJaA9DCEj7H2CtWvW/lIaUUpRoFUsyaBZHQMOxl+DWbw11fZQoaAZoCWgPQwiOy7ipgab6v5SGlFKUaBVLMmgWR0DDsYywjdHldX2UKGgGaAloD0MI/rRRnQ4k9r+UhpRSlGgVSzJoFkdAw7GB26ClJ3V9lChoBmgJaA9DCHWxaaUQCAXAlIaUUpRoFUsyaBZHQMOxdoJ7b+N1fZQoaAZoCWgPQwjiAWVTrvACwJSGlFKUaBVLMmgWR0DDsc5fOUt7dX2UKGgGaAloD0MIzqeOVUqPAsCUhpRSlGgVSzJoFkdAw7HDLeQ+2XV9lChoBmgJaA9DCC8VG/M6YgbAlIaUUpRoFUsyaBZHQMOxuD0Dlo11fZQoaAZoCWgPQwirz9VW7C8EwJSGlFKUaBVLMmgWR0DDsa0DKYAsdX2UKGgGaAloD0MIfLd546RwDsCUhpRSlGgVSzJoFkdAw7H49/SYxHV9lChoBmgJaA9DCFN40Oy6t+y/lIaUUpRoFUsyaBZHQMOx7cYIjW11fZQoaAZoCWgPQwgWFAZlGo0JwJSGlFKUaBVLMmgWR0DDseLNdJJ5dX2UKGgGaAloD0MIOZ1kq8tZEcCUhpRSlGgVSzJoFkdAw7HXdXT3I3V9lChoBmgJaA9DCPq2YKkuoP+/lIaUUpRoFUsyaBZHQMOyI1S4vvl1fZQoaAZoCWgPQwh5WRMLfCUKwJSGlFKUaBVLMmgWR0DDshgvSMLndX2UKGgGaAloD0MI7j8yHTo9+L+UhpRSlGgVSzJoFkdAw7INRTCLuXV9lChoBmgJaA9DCO6yX3e68/m/lIaUUpRoFUsyaBZHQMOyAfKISDh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 236360, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2+-x86_64-with-glibc2.31 # 1 SMP Wed May 3 12:00:32 CST 2023", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "False", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (380 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.9981682979036122, "std_reward": 1.0447685569874925, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-11T17:11:26.399989"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a42174498d36053446ecad2a69f81eb77c129b51a7f23fca597b0fb3e87d3d3
|
3 |
+
size 2464
|