File size: 6,499 Bytes
c87989b
 
 
 
 
 
 
 
 
 
4b4b2ab
 
8e6a151
4b4b2ab
 
8e6a151
 
 
 
4b4b2ab
 
8e6a151
4b4b2ab
8e6a151
 
 
 
c4b6e48
4b4b2ab
8e6a151
4b4b2ab
8e6a151
4b4b2ab
8e6a151
 
4b4b2ab
8e6a151
4b4b2ab
8e6a151
 
 
 
 
4b4b2ab
8e6a151
 
 
 
 
 
4b4b2ab
 
8e6a151
 
 
 
4b4b2ab
 
8e6a151
4b4b2ab
8e6a151
4b4b2ab
8e6a151
 
 
 
4b4b2ab
8e6a151
4b4b2ab
8e6a151
 
 
 
4b4b2ab
 
 
9397287
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3774038
7b963be
 
4b4b2ab
8e6a151
 
8fd99ab
8e6a151
8fd99ab
8e6a151
4b4b2ab
8e6a151
4b4b2ab
 
8e6a151
4b4b2ab
8e6a151
 
 
 
 
 
 
 
 
 
4b4b2ab
 
8e6a151
4b4b2ab
8e6a151
4b4b2ab
 
8e6a151
4b4b2ab
8e6a151
2535bc8
965ae97
8e6a151
 
 
 
 
 
 
 
965ae97
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
---
license: llama3
language:
- en
- ja
- zh
base_model:
- meta-llama/Meta-Llama-3-8B
pipeline_tag: text-generation
library_name: transformers
---

# ELAINE-medllm - Build with Llama3-8B


ELAINE (EngLish-jApanese-chINesE)-medLLM is a trilingual (English, Japanese, Chinese) large language mol adapted for the bio-medical domain based on Llama-3-8B.
The training dataset was carefully curated in terms of volume and diversity to adapt to the biomedical domain and endow trilingual capability while preserving the knowledge and abilities of the base model.
The training follows 2-stage paths: continued pre-training and supervised fine-tuning (SFT).
ELAINE-medLLM exhibits superior trilingual capabilities compared to existing bilingual or multilingual medical LLMs without severely sacrificing the base model's capability.


## Model Details

* **Model type**: Please refer to [Llama 3 Github](https://github.com/meta-llama/llama3) for details on the model architecture.
* **Language(s)**: English, Japanese, Chinese
* **Library**: [DeepSpeed](hhttps://github.com/microsoft/DeepSpeed) 
* **Tokenizer**: Please refer to [Llama 3 blog](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the tokenizer.


## Model Performance

## Evaluation Benchmarks

The evaluation behchmark dataset and evaluation code can be obtained from [this Github site](https://github.com/aistairc/medLLM_QA_benchmark).
The details of the bechmark are as follows.

### English evaluation benchmarks

  - [MedQA](https://arxiv.org/abs/2009.13081)
  - [MedQA-4op](https://arxiv.org/abs/2009.13081)
  - [MMLU](https://arxiv.org/abs/2009.03300)
  - [MedMCQA](https://proceedings.mlr.press/v174/pal22a.html)
  - [PubMedQA](https://doi.org/10.18653/v1/D19-1259)

### Japanese evaluation benchmarks
  - [IgakuQA](https://github.com/jungokasai/IgakuQA)
  	- We concatenate the original exam data from 2018 to 2022 into a single JSON file.
  - [JJSIMQA](https://arxiv.org/abs/2310.10083)
  - DenQA
  	- It contains the exam problems from the Japan National Dentistry Examination and their answers in the past two years (from 2023 through 2024) extracted from the official website of the Ministry of Health, Labor and Welfare in Japan (https://www.mhlw.go.jp/stf/english/index.html).


### Chinese evaluation benchmarks
  - [MedQA](https://arxiv.org/abs/2009.13081)
  - [MedQA-4op](https://arxiv.org/abs/2009.13081)
  - [CMExam](https://arxiv.org/abs/2306.03030)


## Training Datasets

### Continued pre-training

For continued pretraining, we collected English, Japanese, and Chinese text in the bio-medical domain.
The domain text collected is classified into six categories: 1) scientific papers, 2) medical guidelines, 3) web text related to biomedical, 4) textbook of biomedical, 5) PubMed abstracts, and 6) PubMed Central (PMC) archives.
For the Japanese PubMed abstract, we used the original English PubMed abstract translated in Japanese.
We used only open-licensed text except for the Japanese biomedical papers from [J-STAGE](https://www.jstage.jst.go.jp/browse/-char/en).

### Instruction supervised fine-tuning

We collected various conversational QA datasets in the bio-medical domain from different data sources.
For English, we used Medical Meadow in MedAlpca, HealthCareMagic, and iClilic dataset used in ChatDoctor.
We adapted the augmented QA dataset from HuatuoGPT-2 for Chinese and English.
For Japanese, we used existing alpaca datasets in the general domain translated in Japanese.

### Results

## English benchmark
| model_name                            | MMLU   | MedMCQA | MedQA  | MedQA-4op | PubMedQA | Avg    |
|---------------------------------------|--------|---------|--------|-----------|----------|--------|
| google_gemma-7b                       | 63.65  | 49.81   | 43.38  | 48.82     | 71.52    | 55.44  |
| meta-llama_Llama-2-7b-hf              | 45.02  | 36.84   | 30.13  | 36.59     | 49.90    | 39.70  |
| meta-llama_Meta-Llama-3-8B            | 71.22  | 56.97   | 52.60  | 57.89     | 69.70    | 61.68  |
| tokyotech-llm_Llama-3-Swallow-8B-v0.1 | 65.96  | 51.27   | 45.90  | 52.92     | 61.01    | 55.41  |
| Llama3-ELAINE-medLLM-8B               | 67.80  | 54.55   | 50.47  | 57.73     | 67.27    | 59.56  |

## Japanese benchmark


| model_name                            | DenQA  | IgakuQA | JJSIMQA | Avg    |
|---------------------------------------|--------|---------|---------|--------|
| google_gemma-7b                       | 18.60  | 29.02   | 18.90   | 22.17  |
| meta-llama_Llama-2-7b-hf              | 10.63  | 17.64   | 8.13    | 12.13  |
| meta-llama_Meta-Llama-3-8B            | 18.88  | 35.09   | 23.52   | 25.83  |
| tokyotech-llm_Llama-3-Swallow-8B-v0.1 | 22.24  | 42.21   | 27.25   | 30.57  |
| Llama3-ELAINE-medLLM-8B               | 22.38  | 44.06   | 29.45   | 31.96  |


## Chinese benchmark


| model_name                            | CMExam | MedQA  | MedQA-4op | Avg    |
|---------------------------------------|--------|--------|-----------|--------|
| google_gemma-7b                       | 36.34  | 40.54  | 43.03     | 39.97  |
| meta-llama_Llama-2-7b-hf              | 24.33  | 25.02  | 29.61     | 26.32  |
| meta-llama_Meta-Llama-3-8B            | 40.30  | 44.96  | 51.15     | 45.47  |
| tokyotech-llm_Llama-3-Swallow-8B-v0.1 | 36.19  | 40.89  | 48.00     | 41.69  |
| Llama3-ELAINE-medLLM-8B               | 46.03  | 52.50  | 58.23     | 52.25  |




 
## Risks and Limitations

The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.

## Acknowledgements

We thank Meta Research for releasing Llama 3 under a generous open license.


## Authors

- Ken Yano
- Zheheng Luo
- Jimin Huang
- Qianqian Xie
- Masaki Asada
- Chenhan Yuan
- Kailai Yang
- Makoto Miwa
- Sophia Ananiadou
- Jun'ichi Tsujii


## Contact

- Ken Yano [[email protected]]


## How to cite

If you find our work helpful, please feel free to cite these papers.

```
@article{published_papers/48577159,
title = {ELAINE-medLLM: Lightweight English Japanese Chinese Trilingual Large Language Model for Bio-medical Domain (To appear)},
author = {Ken Yano and Zheheng Luo and Jimin Huang and Qianqian Xie and Masaki Asada and Chenhan Yuan and Kailai Yang and Makoto Miwa and Sophia Ananiadou and Jun'ichi Tsujii},
journal = {The 31st International Conference on Computational Linguistics (COLING 2025)},
month = {1},
year = {2025}
}
```