File size: 2,220 Bytes
2989313 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
datasets:
- nusatranslation_mt
metrics:
- sacrebleu
model-index:
- name: bbc-to-ind-nmt-v2
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: nusatranslation_mt
type: nusatranslation_mt
config: nusatranslation_mt_btk_ind_source
split: test
args: nusatranslation_mt_btk_ind_source
metrics:
- name: Sacrebleu
type: sacrebleu
value: 37.5332
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bbc-to-ind-nmt-v2
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the nusatranslation_mt dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1380
- Sacrebleu: 37.5332
- Gen Len: 37.17
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 4.6139 | 1.0 | 825 | 1.2915 | 32.7445 | 37.5685 |
| 1.1761 | 2.0 | 1650 | 1.1701 | 35.9991 | 37.3645 |
| 1.0383 | 3.0 | 2475 | 1.1361 | 36.9321 | 37.035 |
| 0.9094 | 4.0 | 3300 | 1.1333 | 37.4774 | 37.039 |
| 0.8158 | 5.0 | 4125 | 1.1380 | 37.5332 | 37.17 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.13.1
- Tokenizers 0.19.1
|