File size: 5,649 Bytes
111cffc
e120101
 
 
 
 
 
 
291c906
e120101
bee8d68
e120101
bee8d68
3d6518e
 
 
 
291c906
111cffc
 
bee8d68
111cffc
bee8d68
 
111cffc
bee8d68
111cffc
e120101
111cffc
bee8d68
 
 
 
 
 
 
 
 
d3ffb35
bee8d68
 
 
 
 
 
 
 
 
 
 
 
111cffc
bee8d68
111cffc
bee8d68
111cffc
bee8d68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba2fab8
111cffc
e120101
 
 
 
111cffc
 
bee8d68
bb8b10f
 
e120101
204d564
e120101
 
204d564
ba2fab8
bee8d68
 
 
 
 
 
 
 
f04d96d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d6518e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
license: creativeml-openrail-m
tags:
- keras
- diffusers
- stable-diffusion
- text-to-image
- diffusion-models-class
- keras-dreambooth
- nature
inference: true
widget:
- text: a photo of puggieace dog on the beach, sunset in background
datasets:
- nielsgl/dreambooth-ace
library_name: keras
pipeline_tag: text-to-image
emoji: 🐶 
---

# KerasCV Stable Diffusion in Diffusers 🧨🤗

DreamBooth model for the `puggieace` concept trained by nielsgl on the `nielsgl/dreambooth-ace` dataset.
It can be used by modifying the `instance_prompt`: **a photo of puggieace**.

The examples are from 2 different Keras CV models (`StableDiffusion` and `StableDiffusionV2`, corresponding to Stable Diffusion V1.4 and V2.1, respectively) trained on the same dataset (`nielsgl/dreambooth-ace`).

## Description

The Stable Diffusion V2 pipeline contained in the corresponding repository (`nielsgl/dreambooth-keras-pug-ace-sd2.1`) was created using a modified version of [this Space](https://huggingface.co/spaces/sayakpaul/convert-kerascv-sd-diffusers) for StableDiffusionV2 from KerasCV. The purpose is to convert the KerasCV Stable Diffusion weights in a way that is compatible with [Diffusers](https://github.com/huggingface/diffusers). This allows users to fine-tune using KerasCV and use the fine-tuned weights in Diffusers taking advantage of its nifty features (like [schedulers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/schedulers), [fast attention](https://huggingface.co/docs/diffusers/optimization/fp16), etc.).
This model was created as part of the Keras DreamBooth Sprint 🔥. Visit the [organisation page](https://huggingface.co/keras-dreambooth) for instructions on how to take part!

## Examples

### Stable Diffusion V1.4

> Portrait of puggieace dog as a Roman Emperor, city in background

![Portrait of puggieace dog as a Roman Emperor, city in background, ultra realistic, intricate details, eerie, highly detailed, photorealistic, octane render, 8 k, unreal engine. art by artgerm and greg rutkowski and charlie bowater and magali villeneuve and alphonse mucha](examples/emperor-1.4.jpeg)

> Photo of puggieace dog wearing sunglasses on the beach, sunset in background, golden hour

![Photo of puggieace dog wearing sunglasses on the beach, sunset in background, golden hour](examples/beach-1.4.jpg)

> Photo of cute puggieace dog as an astronaut, planet and spaceship in background

![Photo of cute puggieace dog as an astronaut, planet and spaceship in background, ultra realistic, intricate details, highly detailed, photorealistic, octane render, 8 k, unreal engine. trending on artstation](examples/astronaut-1.4.jpg)

### Stable Diffusion V2.1

> Portrait painting of a cute puggieace dog as a samurai

![Portrait painting of a cute puggieace dog as a samurai, ultra realistic, concept art, intricate details, eerie, highly detailed, photorealistic, octane render, 8 k, unreal engine. art by artgerm and greg rutkowski and charlie bowater and magali villeneuve and alphonse mucha](examples/samurai-2.1.jpg)

> Photo of cute puggieace dog as an astronaut, space and planet in background

![Photo of cute puggieace dog as an astronaut, space and planet in background, ultra realistic, concept art, intricate details, highly detailed, photorealistic, octane render, 8 k, unreal engine. art by artgerm and greg rutkowski and charlie bowater, trending on artstation](examples/astronaut-2.1.jpg)

> A photo of a cute puggieace dog getting a haircut in a barbershop

![A photo of a cute puggieace dog getting a haircut in a barbershop, ultra realistic, intricate details, highly detailed, photorealistic, octane render, 8 k, unreal engine. art by artgerm and greg rutkowski and charlie bowater and magali villeneuve and alphonse mucha](examples/haircut-2.1.jpg)

> Portrait photo of puggieace dog in New York

![Portrait photo of puggieace dog in New York, city and skyscrapers in background, highly detailed, photorealistic, hdr, 4k](examples/ny-2.1.jpg)

> Portrait of puggieace dog as a Roman Emperor, city in background

![Portrait of puggieace dog as a Roman Emperor, city in background, ultra realistic, intricate details, eerie, highly detailed, photorealistic, octane render, 8 k, unreal engine. art by artgerm and greg rutkowski and charlie bowater and magali villeneuve and alphonse mucha](examples/emperor-2.1.jpg)


## Usage with Stable Diffusion V1.4

```python
from huggingface_hub import from_pretrained_keras
import keras_cv
import matplotlib.pyplot as plt


model = keras_cv.models.StableDiffusion(img_width=512, img_height=512, jit_compile=True)
model._diffusion_model = from_pretrained_keras("nielsgl/dreambooth-pug-ace")
model._text_encoder = from_pretrained_keras("nielsgl/dreambooth-pug-ace-text-encoder")

images = model.text_to_image("a photo of puggieace dog on the beach", batch_size=3)
plt.imshow(image[0])
```

## Usage with Stable Diffusion V2.1

```python
from diffusers import StableDiffusionPipeline

pipeline = StableDiffusionPipeline.from_pretrained('nielsgl/dreambooth-keras-pug-ace-sd2.1')
image = pipeline().images[0]
image
```

### Training hyperparameters

The following hyperparameters were used during training for Stable Diffusion v1.4:

| Hyperparameters | Value |
| :-- | :-- |
| name | RMSprop |
| weight_decay | None |
| clipnorm | None |
| global_clipnorm | None |
| clipvalue | None |
| use_ema | False |
| ema_momentum | 0.99 |
| ema_overwrite_frequency | 100 |
| jit_compile | True |
| is_legacy_optimizer | False |
| learning_rate | 0.0010000000474974513 |
| rho | 0.9 |
| momentum | 0.0 |
| epsilon | 1e-07 |
| centered | False |
| training_precision | float32 |