Upload mnist_convnet.ipynb
Browse files- mnist_convnet.ipynb +428 -0
mnist_convnet.ipynb
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "q5DtHwQEzfyR"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# Simple MNIST convnet\n",
|
10 |
+
"\n",
|
11 |
+
"**Author:** [fchollet](https://twitter.com/fchollet)<br>\n",
|
12 |
+
"**Date created:** 2015/06/19<br>\n",
|
13 |
+
"**Last modified:** 2020/04/21<br>\n",
|
14 |
+
"**Description:** A simple convnet that achieves ~99% test accuracy on MNIST."
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"metadata": {
|
20 |
+
"id": "eZlWB3GpzfyT"
|
21 |
+
},
|
22 |
+
"source": [
|
23 |
+
"## Setup"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 2,
|
29 |
+
"metadata": {
|
30 |
+
"id": "8utAtD_ozfyU"
|
31 |
+
},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"import numpy as np\n",
|
35 |
+
"from tensorflow import keras\n",
|
36 |
+
"from tensorflow.keras import layers"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "markdown",
|
41 |
+
"metadata": {
|
42 |
+
"id": "gbQiYBo1zfyV"
|
43 |
+
},
|
44 |
+
"source": [
|
45 |
+
"## Prepare the data"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": 3,
|
51 |
+
"metadata": {
|
52 |
+
"id": "qJZ6R9iFzfyV",
|
53 |
+
"outputId": "76eaada0-0f90-41e1-fa22-866d75351911",
|
54 |
+
"colab": {
|
55 |
+
"base_uri": "https://localhost:8080/"
|
56 |
+
}
|
57 |
+
},
|
58 |
+
"outputs": [
|
59 |
+
{
|
60 |
+
"output_type": "stream",
|
61 |
+
"name": "stdout",
|
62 |
+
"text": [
|
63 |
+
"Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n",
|
64 |
+
"11493376/11490434 [==============================] - 0s 0us/step\n",
|
65 |
+
"11501568/11490434 [==============================] - 0s 0us/step\n",
|
66 |
+
"x_train shape: (60000, 28, 28, 1)\n",
|
67 |
+
"60000 train samples\n",
|
68 |
+
"10000 test samples\n"
|
69 |
+
]
|
70 |
+
}
|
71 |
+
],
|
72 |
+
"source": [
|
73 |
+
"# Model / data parameters\n",
|
74 |
+
"num_classes = 10\n",
|
75 |
+
"input_shape = (28, 28, 1)\n",
|
76 |
+
"\n",
|
77 |
+
"# the data, split between train and test sets\n",
|
78 |
+
"(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()\n",
|
79 |
+
"\n",
|
80 |
+
"# Scale images to the [0, 1] range\n",
|
81 |
+
"x_train = x_train.astype(\"float32\") / 255\n",
|
82 |
+
"x_test = x_test.astype(\"float32\") / 255\n",
|
83 |
+
"# Make sure images have shape (28, 28, 1)\n",
|
84 |
+
"x_train = np.expand_dims(x_train, -1)\n",
|
85 |
+
"x_test = np.expand_dims(x_test, -1)\n",
|
86 |
+
"print(\"x_train shape:\", x_train.shape)\n",
|
87 |
+
"print(x_train.shape[0], \"train samples\")\n",
|
88 |
+
"print(x_test.shape[0], \"test samples\")\n",
|
89 |
+
"\n",
|
90 |
+
"\n",
|
91 |
+
"# convert class vectors to binary class matrices\n",
|
92 |
+
"y_train = keras.utils.to_categorical(y_train, num_classes)\n",
|
93 |
+
"y_test = keras.utils.to_categorical(y_test, num_classes)"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"cell_type": "markdown",
|
98 |
+
"metadata": {
|
99 |
+
"id": "kqdKUp6tzfyV"
|
100 |
+
},
|
101 |
+
"source": [
|
102 |
+
"## Build the model"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": 4,
|
108 |
+
"metadata": {
|
109 |
+
"id": "GCmWGoyGzfyW",
|
110 |
+
"outputId": "85fad2b6-4b43-406c-bab6-4097a0741b6d",
|
111 |
+
"colab": {
|
112 |
+
"base_uri": "https://localhost:8080/"
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"outputs": [
|
116 |
+
{
|
117 |
+
"output_type": "stream",
|
118 |
+
"name": "stdout",
|
119 |
+
"text": [
|
120 |
+
"Model: \"sequential\"\n",
|
121 |
+
"_________________________________________________________________\n",
|
122 |
+
" Layer (type) Output Shape Param # \n",
|
123 |
+
"=================================================================\n",
|
124 |
+
" conv2d (Conv2D) (None, 26, 26, 32) 320 \n",
|
125 |
+
" \n",
|
126 |
+
" max_pooling2d (MaxPooling2D (None, 13, 13, 32) 0 \n",
|
127 |
+
" ) \n",
|
128 |
+
" \n",
|
129 |
+
" conv2d_1 (Conv2D) (None, 11, 11, 64) 18496 \n",
|
130 |
+
" \n",
|
131 |
+
" max_pooling2d_1 (MaxPooling (None, 5, 5, 64) 0 \n",
|
132 |
+
" 2D) \n",
|
133 |
+
" \n",
|
134 |
+
" flatten (Flatten) (None, 1600) 0 \n",
|
135 |
+
" \n",
|
136 |
+
" dropout (Dropout) (None, 1600) 0 \n",
|
137 |
+
" \n",
|
138 |
+
" dense (Dense) (None, 10) 16010 \n",
|
139 |
+
" \n",
|
140 |
+
"=================================================================\n",
|
141 |
+
"Total params: 34,826\n",
|
142 |
+
"Trainable params: 34,826\n",
|
143 |
+
"Non-trainable params: 0\n",
|
144 |
+
"_________________________________________________________________\n"
|
145 |
+
]
|
146 |
+
}
|
147 |
+
],
|
148 |
+
"source": [
|
149 |
+
"model = keras.Sequential(\n",
|
150 |
+
" [\n",
|
151 |
+
" keras.Input(shape=input_shape),\n",
|
152 |
+
" layers.Conv2D(32, kernel_size=(3, 3), activation=\"relu\"),\n",
|
153 |
+
" layers.MaxPooling2D(pool_size=(2, 2)),\n",
|
154 |
+
" layers.Conv2D(64, kernel_size=(3, 3), activation=\"relu\"),\n",
|
155 |
+
" layers.MaxPooling2D(pool_size=(2, 2)),\n",
|
156 |
+
" layers.Flatten(),\n",
|
157 |
+
" layers.Dropout(0.5),\n",
|
158 |
+
" layers.Dense(num_classes, activation=\"softmax\"),\n",
|
159 |
+
" ]\n",
|
160 |
+
")\n",
|
161 |
+
"\n",
|
162 |
+
"model.summary()"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "markdown",
|
167 |
+
"metadata": {
|
168 |
+
"id": "lhwcwv48zfyX"
|
169 |
+
},
|
170 |
+
"source": [
|
171 |
+
"## Train the model"
|
172 |
+
]
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"cell_type": "code",
|
176 |
+
"execution_count": 5,
|
177 |
+
"metadata": {
|
178 |
+
"id": "lTElNbSEzfyX",
|
179 |
+
"outputId": "22052ddf-9388-4916-84f8-eaecca77d186",
|
180 |
+
"colab": {
|
181 |
+
"base_uri": "https://localhost:8080/"
|
182 |
+
}
|
183 |
+
},
|
184 |
+
"outputs": [
|
185 |
+
{
|
186 |
+
"output_type": "stream",
|
187 |
+
"name": "stdout",
|
188 |
+
"text": [
|
189 |
+
"Epoch 1/10\n",
|
190 |
+
"422/422 [==============================] - 46s 107ms/step - loss: 0.3677 - accuracy: 0.8880 - val_loss: 0.0825 - val_accuracy: 0.9780\n",
|
191 |
+
"Epoch 2/10\n",
|
192 |
+
"422/422 [==============================] - 45s 106ms/step - loss: 0.1108 - accuracy: 0.9664 - val_loss: 0.0628 - val_accuracy: 0.9837\n",
|
193 |
+
"Epoch 3/10\n",
|
194 |
+
"422/422 [==============================] - 45s 106ms/step - loss: 0.0860 - accuracy: 0.9732 - val_loss: 0.0453 - val_accuracy: 0.9877\n",
|
195 |
+
"Epoch 4/10\n",
|
196 |
+
"422/422 [==============================] - 44s 104ms/step - loss: 0.0703 - accuracy: 0.9786 - val_loss: 0.0435 - val_accuracy: 0.9875\n",
|
197 |
+
"Epoch 5/10\n",
|
198 |
+
"422/422 [==============================] - 44s 104ms/step - loss: 0.0599 - accuracy: 0.9810 - val_loss: 0.0398 - val_accuracy: 0.9890\n",
|
199 |
+
"Epoch 6/10\n",
|
200 |
+
"422/422 [==============================] - 44s 104ms/step - loss: 0.0556 - accuracy: 0.9830 - val_loss: 0.0364 - val_accuracy: 0.9898\n",
|
201 |
+
"Epoch 7/10\n",
|
202 |
+
"422/422 [==============================] - 45s 107ms/step - loss: 0.0509 - accuracy: 0.9838 - val_loss: 0.0333 - val_accuracy: 0.9910\n",
|
203 |
+
"Epoch 8/10\n",
|
204 |
+
"422/422 [==============================] - 46s 108ms/step - loss: 0.0477 - accuracy: 0.9847 - val_loss: 0.0314 - val_accuracy: 0.9920\n",
|
205 |
+
"Epoch 9/10\n",
|
206 |
+
"422/422 [==============================] - 44s 104ms/step - loss: 0.0443 - accuracy: 0.9859 - val_loss: 0.0319 - val_accuracy: 0.9930\n",
|
207 |
+
"Epoch 10/10\n",
|
208 |
+
"422/422 [==============================] - 43s 103ms/step - loss: 0.0409 - accuracy: 0.9869 - val_loss: 0.0299 - val_accuracy: 0.9923\n"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"output_type": "execute_result",
|
213 |
+
"data": {
|
214 |
+
"text/plain": [
|
215 |
+
"<keras.callbacks.History at 0x7fd82e27a850>"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
"metadata": {},
|
219 |
+
"execution_count": 5
|
220 |
+
}
|
221 |
+
],
|
222 |
+
"source": [
|
223 |
+
"batch_size = 128\n",
|
224 |
+
"epochs = 10\n",
|
225 |
+
"\n",
|
226 |
+
"model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n",
|
227 |
+
"\n",
|
228 |
+
"model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "markdown",
|
233 |
+
"metadata": {
|
234 |
+
"id": "YebG6y4izfyY"
|
235 |
+
},
|
236 |
+
"source": [
|
237 |
+
"## Evaluate the trained model"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"cell_type": "code",
|
242 |
+
"execution_count": 6,
|
243 |
+
"metadata": {
|
244 |
+
"id": "J5oNREXjzfyY",
|
245 |
+
"outputId": "98337645-eefe-479c-9a2c-9c3cdbf41e2a",
|
246 |
+
"colab": {
|
247 |
+
"base_uri": "https://localhost:8080/"
|
248 |
+
}
|
249 |
+
},
|
250 |
+
"outputs": [
|
251 |
+
{
|
252 |
+
"output_type": "stream",
|
253 |
+
"name": "stdout",
|
254 |
+
"text": [
|
255 |
+
"Test loss: 0.027494722977280617\n",
|
256 |
+
"Test accuracy: 0.9898999929428101\n"
|
257 |
+
]
|
258 |
+
}
|
259 |
+
],
|
260 |
+
"source": [
|
261 |
+
"score = model.evaluate(x_test, y_test, verbose=0)\n",
|
262 |
+
"print(\"Test loss:\", score[0])\n",
|
263 |
+
"print(\"Test accuracy:\", score[1])"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"cell_type": "code",
|
268 |
+
"source": [
|
269 |
+
"!curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash"
|
270 |
+
],
|
271 |
+
"metadata": {
|
272 |
+
"id": "BOyNRT863adC",
|
273 |
+
"outputId": "659ef954-5a83-49ea-926c-d9f367b38d2b",
|
274 |
+
"colab": {
|
275 |
+
"base_uri": "https://localhost:8080/"
|
276 |
+
}
|
277 |
+
},
|
278 |
+
"execution_count": 20,
|
279 |
+
"outputs": [
|
280 |
+
{
|
281 |
+
"output_type": "stream",
|
282 |
+
"name": "stdout",
|
283 |
+
"text": [
|
284 |
+
"Detected operating system as Ubuntu/bionic.\n",
|
285 |
+
"Checking for curl...\n",
|
286 |
+
"Detected curl...\n",
|
287 |
+
"Checking for gpg...\n",
|
288 |
+
"Detected gpg...\n",
|
289 |
+
"Running apt-get update... done.\n",
|
290 |
+
"Installing apt-transport-https... done.\n",
|
291 |
+
"Installing /etc/apt/sources.list.d/github_git-lfs.list...done.\n",
|
292 |
+
"Importing packagecloud gpg key... done.\n",
|
293 |
+
"Running apt-get update... done.\n",
|
294 |
+
"\n",
|
295 |
+
"The repository is setup! You can now install packages.\n"
|
296 |
+
]
|
297 |
+
}
|
298 |
+
]
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"cell_type": "code",
|
302 |
+
"source": [
|
303 |
+
"!pip install huggingface-hub\n",
|
304 |
+
"!curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash\n",
|
305 |
+
"!sudo apt-get install git-lfs\n",
|
306 |
+
"!git-lfs install"
|
307 |
+
],
|
308 |
+
"metadata": {
|
309 |
+
"id": "rMkFpfhk0XOk",
|
310 |
+
"outputId": "047a5b9f-c8bd-467d-84d2-a7b4960a26d9",
|
311 |
+
"colab": {
|
312 |
+
"base_uri": "https://localhost:8080/"
|
313 |
+
}
|
314 |
+
},
|
315 |
+
"execution_count": 21,
|
316 |
+
"outputs": [
|
317 |
+
{
|
318 |
+
"output_type": "stream",
|
319 |
+
"name": "stdout",
|
320 |
+
"text": [
|
321 |
+
"Reading package lists... Done\n",
|
322 |
+
"Building dependency tree \n",
|
323 |
+
"Reading state information... Done\n",
|
324 |
+
"The following NEW packages will be installed:\n",
|
325 |
+
" git-lfs\n",
|
326 |
+
"0 upgraded, 1 newly installed, 0 to remove and 40 not upgraded.\n",
|
327 |
+
"Need to get 6,526 kB of archives.\n",
|
328 |
+
"After this operation, 14.7 MB of additional disk space will be used.\n",
|
329 |
+
"Get:1 https://packagecloud.io/github/git-lfs/ubuntu bionic/main amd64 git-lfs amd64 3.0.2 [6,526 kB]\n",
|
330 |
+
"Fetched 6,526 kB in 1s (5,795 kB/s)\n",
|
331 |
+
"debconf: unable to initialize frontend: Dialog\n",
|
332 |
+
"debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76, <> line 1.)\n",
|
333 |
+
"debconf: falling back to frontend: Readline\n",
|
334 |
+
"debconf: unable to initialize frontend: Readline\n",
|
335 |
+
"debconf: (This frontend requires a controlling tty.)\n",
|
336 |
+
"debconf: falling back to frontend: Teletype\n",
|
337 |
+
"dpkg-preconfigure: unable to re-open stdin: \n",
|
338 |
+
"Selecting previously unselected package git-lfs.\n",
|
339 |
+
"(Reading database ... 155222 files and directories currently installed.)\n",
|
340 |
+
"Preparing to unpack .../git-lfs_3.0.2_amd64.deb ...\n",
|
341 |
+
"Unpacking git-lfs (3.0.2) ...\n",
|
342 |
+
"Setting up git-lfs (3.0.2) ...\n",
|
343 |
+
"Git LFS initialized.\n",
|
344 |
+
"Processing triggers for man-db (2.8.3-2ubuntu0.1) ...\n"
|
345 |
+
]
|
346 |
+
}
|
347 |
+
]
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"cell_type": "code",
|
351 |
+
"source": [
|
352 |
+
"!huggingface-cli login"
|
353 |
+
],
|
354 |
+
"metadata": {
|
355 |
+
"id": "uZWWvPH82quN",
|
356 |
+
"outputId": "f5c83a3b-62de-4ffd-db6a-25eed36bf9b0",
|
357 |
+
"colab": {
|
358 |
+
"base_uri": "https://localhost:8080/"
|
359 |
+
}
|
360 |
+
},
|
361 |
+
"execution_count": 13,
|
362 |
+
"outputs": [
|
363 |
+
{
|
364 |
+
"output_type": "stream",
|
365 |
+
"name": "stdout",
|
366 |
+
"text": [
|
367 |
+
"\n",
|
368 |
+
" _| _| _| _| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _|_|_|_| _|_| _|_|_| _|_|_|_|\n",
|
369 |
+
" _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n",
|
370 |
+
" _|_|_|_| _| _| _| _|_| _| _|_| _| _| _| _| _| _|_| _|_|_| _|_|_|_| _| _|_|_|\n",
|
371 |
+
" _| _| _| _| _| _| _| _| _| _| _|_| _| _| _| _| _| _| _|\n",
|
372 |
+
" _| _| _|_| _|_|_| _|_|_| _|_|_| _| _| _|_|_| _| _| _| _|_|_| _|_|_|_|\n",
|
373 |
+
"\n",
|
374 |
+
" To login, `huggingface_hub` now requires a token generated from https://huggingface.co/settings/token.\n",
|
375 |
+
" (Deprecated, will be removed in v0.3.0) To login with username and password instead, interrupt with Ctrl+C.\n",
|
376 |
+
" \n",
|
377 |
+
"Token: \n",
|
378 |
+
"Login successful\n",
|
379 |
+
"Your token has been saved to /root/.huggingface/token\n",
|
380 |
+
"\u001b[1m\u001b[31mAuthenticated through git-credential store but this isn't the helper defined on your machine.\n",
|
381 |
+
"You might have to re-authenticate when pushing to the Hugging Face Hub. Run the following command in your terminal in case you want to set this credential helper as the default\n",
|
382 |
+
"\n",
|
383 |
+
"git config --global credential.helper store\u001b[0m\n"
|
384 |
+
]
|
385 |
+
}
|
386 |
+
]
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"cell_type": "code",
|
390 |
+
"source": [
|
391 |
+
"from huggingface_hub.keras_mixin import push_to_hub_keras\n",
|
392 |
+
"push_to_hub_keras(model = model, repo_url = \"https://huggingface.co/keras-io/simple-mnist-convnet\", organization = \"keras-io\")"
|
393 |
+
],
|
394 |
+
"metadata": {
|
395 |
+
"id": "RhssM1Dy0sl_"
|
396 |
+
},
|
397 |
+
"execution_count": 11,
|
398 |
+
"outputs": []
|
399 |
+
}
|
400 |
+
],
|
401 |
+
"metadata": {
|
402 |
+
"colab": {
|
403 |
+
"collapsed_sections": [],
|
404 |
+
"name": "mnist_convnet",
|
405 |
+
"provenance": [],
|
406 |
+
"toc_visible": true
|
407 |
+
},
|
408 |
+
"kernelspec": {
|
409 |
+
"display_name": "Python 3",
|
410 |
+
"language": "python",
|
411 |
+
"name": "python3"
|
412 |
+
},
|
413 |
+
"language_info": {
|
414 |
+
"codemirror_mode": {
|
415 |
+
"name": "ipython",
|
416 |
+
"version": 3
|
417 |
+
},
|
418 |
+
"file_extension": ".py",
|
419 |
+
"mimetype": "text/x-python",
|
420 |
+
"name": "python",
|
421 |
+
"nbconvert_exporter": "python",
|
422 |
+
"pygments_lexer": "ipython3",
|
423 |
+
"version": "3.7.0"
|
424 |
+
}
|
425 |
+
},
|
426 |
+
"nbformat": 4,
|
427 |
+
"nbformat_minor": 0
|
428 |
+
}
|