Divyasreepat
commited on
Update README.md with new model card content
Browse files
README.md
CHANGED
@@ -1,17 +1,146 @@
|
|
1 |
---
|
2 |
library_name: keras-hub
|
3 |
---
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
*
|
12 |
-
*
|
13 |
-
*
|
14 |
-
*
|
15 |
-
*
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: keras-hub
|
3 |
---
|
4 |
+
### Model Overview
|
5 |
+
DeBERTaV3 encoder networks are a set of transformer encoder models published by Microsoft. DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder.
|
6 |
+
|
7 |
+
Weights are released under the [MIT License](https://opensource.org/license/mit). Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).
|
8 |
+
|
9 |
+
## Links
|
10 |
+
|
11 |
+
* [DeBERTaV3 Quickstart Notebook](https://www.kaggle.com/code/gabrielrasskin/debertav3-quickstart)
|
12 |
+
* [DeBERTaV3 API Documentation](https://keras.io/api/keras_hub/models/deberta_v3/deberta_v3_classifier/)
|
13 |
+
* [DeBERTaV3 Model Paper](https://arxiv.org/abs/2111.09543)
|
14 |
+
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
|
15 |
+
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
|
16 |
+
|
17 |
+
## Installation
|
18 |
+
|
19 |
+
Keras and KerasHub can be installed with:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U -q keras-hub
|
23 |
+
pip install -U -q keras>=3
|
24 |
+
```
|
25 |
+
|
26 |
+
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
|
27 |
+
|
28 |
+
## Presets
|
29 |
+
|
30 |
+
The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
|
31 |
+
|
32 |
+
| Preset Name | Parameters | Description |
|
33 |
+
| :------------------------------- | :------------: | :-------------------------------------------------------------------------------------------------------- |
|
34 |
+
| `deberta_v3_extra_small_en` | 70.68M | 12-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
|
35 |
+
| `deberta_v3_small_en` | 141.30M | 6-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
|
36 |
+
| `deberta_v3_base_en` | 183.83M | 12-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
|
37 |
+
| `deberta_v3_large_en` | 434.01M | 24-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. |
|
38 |
+
| `deberta_v3_base_multi` | 278.22M | 12-layer DeBERTaV3 model where case is maintained. Trained on the 2.5TB multilingual CC100 dataset. |
|
39 |
+
|
40 |
+
## Prompts
|
41 |
+
|
42 |
+
DeBERTa's main use as a classifier takes in raw text that is labelled by the class it belongs to. In practice this can look like this:
|
43 |
+
|
44 |
+
```python
|
45 |
+
features = ["The quick brown fox jumped.", "I forgot my homework."]
|
46 |
+
labels = [0, 3]
|
47 |
+
```
|
48 |
+
|
49 |
+
### Example Usage
|
50 |
+
```python
|
51 |
+
import keras
|
52 |
+
import keras_hub
|
53 |
+
import numpy as np
|
54 |
+
```
|
55 |
+
|
56 |
+
Raw string data.
|
57 |
+
```python
|
58 |
+
features = ["The quick brown fox jumped.", "I forgot my homework."]
|
59 |
+
labels = [0, 3]
|
60 |
+
|
61 |
+
# Pretrained classifier.
|
62 |
+
classifier = keras_hub.models.DebertaV3Classifier.from_preset(
|
63 |
+
"deberta_v3_small_en",
|
64 |
+
num_classes=4,
|
65 |
+
)
|
66 |
+
classifier.fit(x=features, y=labels, batch_size=2)
|
67 |
+
classifier.predict(x=features, batch_size=2)
|
68 |
+
|
69 |
+
# Re-compile (e.g., with a new learning rate).
|
70 |
+
classifier.compile(
|
71 |
+
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
72 |
+
optimizer=keras.optimizers.Adam(5e-5),
|
73 |
+
jit_compile=True,
|
74 |
+
)
|
75 |
+
# Access backbone programmatically (e.g., to change `trainable`).
|
76 |
+
classifier.backbone.trainable = False
|
77 |
+
# Fit again.
|
78 |
+
classifier.fit(x=features, y=labels, batch_size=2)
|
79 |
+
```
|
80 |
+
|
81 |
+
Preprocessed integer data.
|
82 |
+
```python
|
83 |
+
features = {
|
84 |
+
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
|
85 |
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
|
86 |
+
}
|
87 |
+
labels = [0, 3]
|
88 |
+
|
89 |
+
# Pretrained classifier without preprocessing.
|
90 |
+
classifier = keras_hub.models.DebertaV3Classifier.from_preset(
|
91 |
+
"deberta_v3_small_en",
|
92 |
+
num_classes=4,
|
93 |
+
preprocessor=None,
|
94 |
+
)
|
95 |
+
classifier.fit(x=features, y=labels, batch_size=2)
|
96 |
+
```
|
97 |
+
|
98 |
+
## Example Usage with Hugging Face URI
|
99 |
+
|
100 |
+
```python
|
101 |
+
import keras
|
102 |
+
import keras_hub
|
103 |
+
import numpy as np
|
104 |
+
```
|
105 |
+
|
106 |
+
Raw string data.
|
107 |
+
```python
|
108 |
+
features = ["The quick brown fox jumped.", "I forgot my homework."]
|
109 |
+
labels = [0, 3]
|
110 |
+
|
111 |
+
# Pretrained classifier.
|
112 |
+
classifier = keras_hub.models.DebertaV3Classifier.from_preset(
|
113 |
+
"hf://keras/deberta_v3_small_en",
|
114 |
+
num_classes=4,
|
115 |
+
)
|
116 |
+
classifier.fit(x=features, y=labels, batch_size=2)
|
117 |
+
classifier.predict(x=features, batch_size=2)
|
118 |
+
|
119 |
+
# Re-compile (e.g., with a new learning rate).
|
120 |
+
classifier.compile(
|
121 |
+
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
|
122 |
+
optimizer=keras.optimizers.Adam(5e-5),
|
123 |
+
jit_compile=True,
|
124 |
+
)
|
125 |
+
# Access backbone programmatically (e.g., to change `trainable`).
|
126 |
+
classifier.backbone.trainable = False
|
127 |
+
# Fit again.
|
128 |
+
classifier.fit(x=features, y=labels, batch_size=2)
|
129 |
+
```
|
130 |
+
|
131 |
+
Preprocessed integer data.
|
132 |
+
```python
|
133 |
+
features = {
|
134 |
+
"token_ids": np.ones(shape=(2, 12), dtype="int32"),
|
135 |
+
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
|
136 |
+
}
|
137 |
+
labels = [0, 3]
|
138 |
+
|
139 |
+
# Pretrained classifier without preprocessing.
|
140 |
+
classifier = keras_hub.models.DebertaV3Classifier.from_preset(
|
141 |
+
"hf://keras/deberta_v3_small_en",
|
142 |
+
num_classes=4,
|
143 |
+
preprocessor=None,
|
144 |
+
)
|
145 |
+
classifier.fit(x=features, y=labels, batch_size=2)
|
146 |
+
```
|