--- library_name: keras-hub license: mit language: - en tags: - text-classification pipeline_tag: text-classification --- ### Model Overview DeBERTaV3 encoder networks are a set of transformer encoder models published by Microsoft. DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. Weights are released under the [MIT License](https://opensource.org/license/mit). Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE). ## Links * [DeBERTaV3 Quickstart Notebook](https://www.kaggle.com/code/gabrielrasskin/debertav3-quickstart) * [DeBERTaV3 API Documentation](https://keras.io/api/keras_hub/models/deberta_v3/deberta_v3_classifier/) * [DeBERTaV3 Model Paper](https://arxiv.org/abs/2111.09543) * [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/) * [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/) ## Installation Keras and KerasHub can be installed with: ``` pip install -U -q keras-hub pip install -U -q keras>=3 ``` Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instruction on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page. ## Presets The following model checkpoints are provided by the Keras team. Full code examples for each are available below. | Preset Name | Parameters | Description | | :------------------------------- | :------------: | :-------------------------------------------------------------------------------------------------------- | | `deberta_v3_extra_small_en` | 70.68M | 12-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. | | `deberta_v3_small_en` | 141.30M | 6-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. | | `deberta_v3_base_en` | 183.83M | 12-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. | | `deberta_v3_large_en` | 434.01M | 24-layer DeBERTaV3 model where case is maintained. Trained on English Wikipedia, BookCorpus and OpenWebText. | | `deberta_v3_base_multi` | 278.22M | 12-layer DeBERTaV3 model where case is maintained. Trained on the 2.5TB multilingual CC100 dataset. | ## Prompts DeBERTa's main use as a classifier takes in raw text that is labelled by the class it belongs to. In practice this can look like this: ```python features = ["The quick brown fox jumped.", "I forgot my homework."] labels = [0, 3] ``` ## Example Usage ```python import keras import keras_hub import numpy as np ``` Raw string data. ```python features = ["The quick brown fox jumped.", "I forgot my homework."] labels = [0, 3] # Pretrained classifier. classifier = keras_hub.models.DebertaV3Classifier.from_preset( "deberta_v3_small_en", num_classes=4, ) classifier.fit(x=features, y=labels, batch_size=2) classifier.predict(x=features, batch_size=2) # Re-compile (e.g., with a new learning rate). classifier.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.Adam(5e-5), jit_compile=True, ) # Access backbone programmatically (e.g., to change `trainable`). classifier.backbone.trainable = False # Fit again. classifier.fit(x=features, y=labels, batch_size=2) ``` Preprocessed integer data. ```python features = { "token_ids": np.ones(shape=(2, 12), dtype="int32"), "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2), } labels = [0, 3] # Pretrained classifier without preprocessing. classifier = keras_hub.models.DebertaV3Classifier.from_preset( "deberta_v3_small_en", num_classes=4, preprocessor=None, ) classifier.fit(x=features, y=labels, batch_size=2) ``` ## Example Usage with Hugging Face URI ```python import keras import keras_hub import numpy as np ``` Raw string data. ```python features = ["The quick brown fox jumped.", "I forgot my homework."] labels = [0, 3] # Pretrained classifier. classifier = keras_hub.models.DebertaV3Classifier.from_preset( "hf://keras/deberta_v3_small_en", num_classes=4, ) classifier.fit(x=features, y=labels, batch_size=2) classifier.predict(x=features, batch_size=2) # Re-compile (e.g., with a new learning rate). classifier.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.Adam(5e-5), jit_compile=True, ) # Access backbone programmatically (e.g., to change `trainable`). classifier.backbone.trainable = False # Fit again. classifier.fit(x=features, y=labels, batch_size=2) ``` Preprocessed integer data. ```python features = { "token_ids": np.ones(shape=(2, 12), dtype="int32"), "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2), } labels = [0, 3] # Pretrained classifier without preprocessing. classifier = keras_hub.models.DebertaV3Classifier.from_preset( "hf://keras/deberta_v3_small_en", num_classes=4, preprocessor=None, ) classifier.fit(x=features, y=labels, batch_size=2) ```