Divyasreepat commited on
Commit
2aa80e2
1 Parent(s): 78ecd1c

Update README.md with new model card content

Browse files
Files changed (1) hide show
  1. README.md +30 -10
README.md CHANGED
@@ -1,12 +1,10 @@
1
  ---
2
  library_name: keras-hub
3
  ---
4
- This is a [`DenseNet` model](https://keras.io/api/keras_hub/models/densenet/) uploaded using the KerasHub library and can be used with JAX, TensorFlow, and PyTorch backends.
5
- This model is related to an `ImageClassifier` task.
6
-
7
  DenseNet is a convolution network which densely connects each layer to every other layer in a feed-forward fashion. The model was originally evaluated on four object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). See the model card below for benchmarks, data sources, and intended use cases. This model is supported in both KerasCV and KerasHub. KerasCV will no longer be actively developed, so please try to use KerasHub.
8
 
9
- Weights are released under the [3-Clause BSD License](https://github.com/liuzhuang13/DenseNet/blob/master/LICENSE). Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-nlp/blob/master/LICENSE).
10
 
11
  ## Links
12
 
@@ -20,7 +18,7 @@ Keras and KerasHub can be installed with:
20
 
21
  ```
22
  pip install -U -q keras-hub
23
- pip install -U -q keras
24
  ```
25
 
26
  Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
@@ -31,17 +29,39 @@ The following model checkpoints are provided by the Keras team. Weights have bee
31
 
32
  | Preset name | Parameters | Description |
33
  |-----------------------|------------|---------------|
 
34
  | `densenet_121_imagenet` | 7037504 | DenseNet model with 121 layers. Trained on Imagenet 2012 classification task. |
35
  | `densenet_169_imagenet` | 12642880 | DenseNet model with 169 layers. Trained on Imagenet 2012 classification task. |
36
  | `densenet_201_imagenet` | 18321984 | DenseNet model with 201 layers. Trained on Imagenet 2012 classification task. |
37
 
38
- ## Example Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
  ```python
41
- input_data = np.ones(shape=(8, 224, 224, 3))
42
 
43
  # Pretrained backbone
44
- model = keras_hub.models.DenseNetBackbone.from_preset("hf://keras/densenet_169_imagenet")
45
  model(input_data)
46
 
47
  # Randomly initialized backbone with a custom config
@@ -51,8 +71,8 @@ model = keras_hub.models.DenseNetBackbone(
51
  model(input_data)
52
 
53
  # Use densenet for image classification task
54
- model = keras_hub.models.ImageClassifier.from_preset("hf://keras/densenet_169_imagenet")
55
 
56
  # User Timm presets directly from HuggingFace
57
- model = keras_hub.models.ImageClassifier.from_preset('hf://timm/densenet169.tv_in1k')
58
  ```
 
1
  ---
2
  library_name: keras-hub
3
  ---
4
+ ### Model Overview
 
 
5
  DenseNet is a convolution network which densely connects each layer to every other layer in a feed-forward fashion. The model was originally evaluated on four object recognition benchmark tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet). See the model card below for benchmarks, data sources, and intended use cases. This model is supported in both KerasCV and KerasHub. KerasCV will no longer be actively developed, so please try to use KerasHub.
6
 
7
+ Weights are released under the [3-Clause BSD License](https://github.com/liuzhuang13/DenseNet/blob/master/LICENSE). Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).
8
 
9
  ## Links
10
 
 
18
 
19
  ```
20
  pip install -U -q keras-hub
21
+ pip install -U -q keras>=3
22
  ```
23
 
24
  Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
 
29
 
30
  | Preset name | Parameters | Description |
31
  |-----------------------|------------|---------------|
32
+ |
33
  | `densenet_121_imagenet` | 7037504 | DenseNet model with 121 layers. Trained on Imagenet 2012 classification task. |
34
  | `densenet_169_imagenet` | 12642880 | DenseNet model with 169 layers. Trained on Imagenet 2012 classification task. |
35
  | `densenet_201_imagenet` | 18321984 | DenseNet model with 201 layers. Trained on Imagenet 2012 classification task. |
36
 
37
+ ### Example Usage
38
+ ```python
39
+ input_data = np.ones(shape=(8, 224, 224, 3))
40
+
41
+ # Pretrained backbone
42
+ model = keras_hub.models.DenseNetBackbone.from_preset("densenet_121_imagenet")
43
+ model(input_data)
44
+
45
+ # Randomly initialized backbone with a custom config
46
+ model = keras_hub.models.DenseNetBackbone(
47
+ stackwise_num_repeats=[6, 12, 24, 16],
48
+ )
49
+ model(input_data)
50
+
51
+ # Use densenet for image classification task
52
+ model = keras_hub.models.ImageClassifier.from_preset("densenet_121_imagenet")
53
+
54
+ # User Timm presets directly from HuggingFace
55
+ model = keras_hub.models.ImageClassifier.from_preset('hf://timm/densenet121.tv_in1k')
56
+ ```
57
+
58
+ ## Example Usage with Hugging Face URI
59
 
60
  ```python
61
+ input_data = np.ones(shape=(8, 224, 224, 3))
62
 
63
  # Pretrained backbone
64
+ model = keras_hub.models.DenseNetBackbone.from_preset("densenet_121_imagenet")
65
  model(input_data)
66
 
67
  # Randomly initialized backbone with a custom config
 
71
  model(input_data)
72
 
73
  # Use densenet for image classification task
74
+ model = keras_hub.models.ImageClassifier.from_preset("densenet_121_imagenet")
75
 
76
  # User Timm presets directly from HuggingFace
77
+ model = keras_hub.models.ImageClassifier.from_preset('hf://timm/densenet121.tv_in1k')
78
  ```