Divyasreepat commited on
Commit
727ff94
1 Parent(s): 3022228

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: keras-hub
3
+ ---
4
+ This is a [`FNet` model](https://keras.io/api/keras_hub/models/f_net) uploaded using the KerasHub library and can be used with JAX, TensorFlow, and PyTorch backends.
5
+ Model config:
6
+ * **name:** f_net_backbone
7
+ * **trainable:** True
8
+ * **vocabulary_size:** 32000
9
+ * **num_layers:** 12
10
+ * **hidden_dim:** 768
11
+ * **intermediate_dim:** 3072
12
+ * **dropout:** 0.1
13
+ * **max_sequence_length:** 512
14
+ * **num_segments:** 4
15
+
16
+ This model card has been generated automatically and should be completed by the model author. See [Model Cards documentation](https://huggingface.co/docs/hub/model-cards) for more information.
assets/tokenizer/vocabulary.spm ADDED
Binary file (708 kB). View file
 
config.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "module": "keras_nlp.src.models.f_net.f_net_backbone",
3
+ "class_name": "FNetBackbone",
4
+ "config": {
5
+ "name": "f_net_backbone",
6
+ "trainable": true,
7
+ "vocabulary_size": 32000,
8
+ "num_layers": 12,
9
+ "hidden_dim": 768,
10
+ "intermediate_dim": 3072,
11
+ "dropout": 0.1,
12
+ "max_sequence_length": 512,
13
+ "num_segments": 4
14
+ },
15
+ "registered_name": "keras_nlp>FNetBackbone",
16
+ "assets": [],
17
+ "weights": "model.weights.h5"
18
+ }
metadata.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "keras_version": "3.0.1",
3
+ "keras_nlp_version": "0.7.0",
4
+ "parameter_count": 82861056,
5
+ "date_saved": "2023-12-27@02:08:10"
6
+ }
model.weights.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc44e476f9dd46d05bf17285b5f5bd917d6977efe87e7a941afdbdd4a7db4f99
3
+ size 331639808
tokenizer.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "module": "keras_nlp.src.models.f_net.f_net_tokenizer",
3
+ "class_name": "FNetTokenizer",
4
+ "config": {
5
+ "name": "f_net_tokenizer",
6
+ "trainable": true,
7
+ "dtype": "int32",
8
+ "proto": null,
9
+ "sequence_length": null
10
+ },
11
+ "registered_name": "keras_nlp>FNetTokenizer",
12
+ "assets": [
13
+ "assets/tokenizer/vocabulary.spm"
14
+ ],
15
+ "weights": null
16
+ }