Divyasreepat commited on
Commit
b778350
·
verified ·
1 Parent(s): 134be23

Update README.md with new model card content

Browse files
Files changed (1) hide show
  1. README.md +36 -1
README.md CHANGED
@@ -14,7 +14,7 @@ T5 encoder-decoder backbone model.
14
  T5 is a LLM pretrained on a mix of unsupervised and supervised tasks,
15
  where each task is converted to a sequence-to-sequence format.
16
  T5 works well on a variety of tasks out-of-the-box by prepending
17
- various prefixex to the input sequence, e.g., for translation:
18
  `"translate English to German: ..."`, for summarization:
19
  `"summarize: ..."`.
20
 
@@ -28,6 +28,41 @@ preset architectures and weights, use the `from_preset` constructor.
28
  Disclaimer: Pre-trained models are provided on an "as is" basis, without
29
  warranties or conditions of any kind.
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  __Arguments__
33
 
 
14
  T5 is a LLM pretrained on a mix of unsupervised and supervised tasks,
15
  where each task is converted to a sequence-to-sequence format.
16
  T5 works well on a variety of tasks out-of-the-box by prepending
17
+ various prefixes to the input sequence, e.g., for translation:
18
  `"translate English to German: ..."`, for summarization:
19
  `"summarize: ..."`.
20
 
 
28
  Disclaimer: Pre-trained models are provided on an "as is" basis, without
29
  warranties or conditions of any kind.
30
 
31
+ ## Links
32
+
33
+ * [T5 Quickstart Notebook](coming soon)
34
+ * [T5 API Documentation](https://keras.io/keras_hub/api/models/t5/)
35
+ * [T5 Model Card](https://github.com/google-research/text-to-text-transfer-transformer/tree/main)
36
+ * [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
37
+ * [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
38
+
39
+ ## Installation
40
+
41
+ Keras and KerasHub can be installed with:
42
+
43
+ ```
44
+ pip install -U -q keras-hub
45
+ pip install -U -q keras
46
+ ```
47
+
48
+ Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
49
+
50
+ ## Presets
51
+
52
+ The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
53
+ | Preset name | Parameters | Description |
54
+ |----------------|------------|--------------------------------------------------|
55
+ | t5_small_multi | 0 | 8-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4).|
56
+ | t5_base_multi| 0 | 12-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
57
+ | t5_large_multi | 0 | 24-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
58
+ | flan_small_multi | 0 | 8-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
59
+ | flan_base_multi | 0 | 12-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
60
+ | flan_large_multi | 0 | 24-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
61
+ | t5_1.1_small | 60.51M | |
62
+ | tt5_1.1_base | 247.58M | |
63
+ | t5_1.1_large | 750.25M | |
64
+ | t5_1.1_xl | 2.85B | |
65
+ | t5_1.1_xxl | 11.14B | |
66
 
67
  __Arguments__
68