Text Generation
KerasHub
Keras
Divyasreepat commited on
Commit
1e3d769
·
verified ·
1 Parent(s): 3c8fca9

Update README.md with new model card content

Browse files
Files changed (1) hide show
  1. README.md +36 -1
README.md CHANGED
@@ -13,7 +13,7 @@ T5 encoder-decoder backbone model.
13
  T5 is a LLM pretrained on a mix of unsupervised and supervised tasks,
14
  where each task is converted to a sequence-to-sequence format.
15
  T5 works well on a variety of tasks out-of-the-box by prepending
16
- various prefixex to the input sequence, e.g., for translation:
17
  `"translate English to German: ..."`, for summarization:
18
  `"summarize: ..."`.
19
 
@@ -27,6 +27,41 @@ preset architectures and weights, use the `from_preset` constructor.
27
  Disclaimer: Pre-trained models are provided on an "as is" basis, without
28
  warranties or conditions of any kind.
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
  __Arguments__
32
 
 
13
  T5 is a LLM pretrained on a mix of unsupervised and supervised tasks,
14
  where each task is converted to a sequence-to-sequence format.
15
  T5 works well on a variety of tasks out-of-the-box by prepending
16
+ various prefixes to the input sequence, e.g., for translation:
17
  `"translate English to German: ..."`, for summarization:
18
  `"summarize: ..."`.
19
 
 
27
  Disclaimer: Pre-trained models are provided on an "as is" basis, without
28
  warranties or conditions of any kind.
29
 
30
+ ## Links
31
+
32
+ * [T5 Quickstart Notebook](coming soon)
33
+ * [T5 API Documentation](https://keras.io/keras_hub/api/models/t5/)
34
+ * [T5 Model Card](https://github.com/google-research/text-to-text-transfer-transformer/tree/main)
35
+ * [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
36
+ * [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
37
+
38
+ ## Installation
39
+
40
+ Keras and KerasHub can be installed with:
41
+
42
+ ```
43
+ pip install -U -q keras-hub
44
+ pip install -U -q keras
45
+ ```
46
+
47
+ Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
48
+
49
+ ## Presets
50
+
51
+ The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
52
+ | Preset name | Parameters | Description |
53
+ |----------------|------------|--------------------------------------------------|
54
+ | t5_small_multi | 0 | 8-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4).|
55
+ | t5_base_multi| 0 | 12-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
56
+ | t5_large_multi | 0 | 24-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
57
+ | flan_small_multi | 0 | 8-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
58
+ | flan_base_multi | 0 | 12-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
59
+ | flan_large_multi | 0 | 24-layer T5 model. Trained on the Colossal Clean Crawled Corpus (C4). |
60
+ | t5_1.1_small | 60.51M | |
61
+ | tt5_1.1_base | 247.58M | |
62
+ | t5_1.1_large | 750.25M | |
63
+ | t5_1.1_xl | 2.85B | |
64
+ | t5_1.1_xxl | 11.14B | |
65
 
66
  __Arguments__
67