File size: 9,693 Bytes
a7c2def c68c546 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
---
library_name: keras-hub
---
### Model Overview
# Model Summary
The Moonshine models are trained for the speech recognition task, capable of transcribing English speech audio into English text. Useful Sensors developed the models to support their business direction of developing real time speech transcription products based on low cost hardware. There are 2 models of different sizes and capabilities, summarized in the presets table.
Weights are released under the [MIT License](https://www.mit.edu/~amini/LICENSE.md) . Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).
## Links
* [Moonshine Quickstart Notebook](https://www.kaggle.com/code/laxmareddypatlolla/moonshine-quickstart-notebook)
* [Moonshine API Documentation](https://keras.io/keras_hub/api/models/moonshine/)
* [Moonshine Model Card](https://arxiv.org/abs/2410.15608)
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
## Installation
Keras and KerasHub can be installed with:
```
pip install -U -q keras-hub
pip install -U -q keras
```
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
## Presets
The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
| Preset name | Parameters | Description |
|---------------------------------------|------------|--------------------------------------------------------------------------------------------------------------|
| moonshine_base_en | 61.5M | Moonshine base model for English speech recognition.Developed by Useful Sensors for real-time transcription.|
| moonshine_tiny_en | 27.1M | Moonshine tiny model for English speech recognition. Developed by Useful Sensors for real-time transcription. |
## Example Usage
```Python
import os
import keras
import keras_hub
import numpy as np
import librosa
import tensorflow as tf
from keras_hub.src.models.moonshine.moonshine_audio_to_text import (
MoonshineAudioToText,
)
# Custom backbone.
backbone = keras_hub.models.MoonshineBackbone(
vocabulary_size=10000,
filter_dim=256,
encoder_num_layers=6,
decoder_num_layers=6,
hidden_dim=256,
intermediate_dim=512,
encoder_num_heads=8,
decoder_num_heads=8,
feedforward_expansion_factor=4,
decoder_use_swiglu_activation=True,
encoder_use_swiglu_activation=False,
)
# Audio features as input (e.g., from MoonshineAudioConverter).
outputs = backbone(
{
"encoder_input_values": np.zeros((1, 16000, 1)),
"encoder_padding_mask": np.ones((1, 16000), dtype=bool),
"decoder_token_ids": np.zeros((1, 20), dtype=np.int32),
"decoder_padding_mask": np.ones((1, 20), dtype=bool),
}
)
# Config for test.
BATCH_SIZE = 2
AUDIO_PATH = "path/to/audio_file.wav"
# Load and prepare audio data.
audio, sr = librosa.load(AUDIO_PATH, sr=16000, mono=True)
audio_tensor = tf.expand_dims(audio, axis=-1)
audio_tensor = tf.convert_to_tensor(audio_tensor, dtype=tf.float32)
single_audio_input_batched = tf.expand_dims(audio_tensor, axis=0)
audio_batch = tf.repeat(single_audio_input_batched, BATCH_SIZE, axis=0)
dummy_texts = ["Sample transcription.", "Another sample transcription."]
# Create tf.data.Dataset.
audio_ds = tf.data.Dataset.from_tensor_slices(audio_batch)
text_ds = tf.data.Dataset.from_tensor_slices(dummy_texts)
audio_dataset = (
tf.data.Dataset.zip((audio_ds, text_ds))
.map(lambda audio, txt: {"audio": audio, "text": txt})
.batch(BATCH_SIZE)
)
print("Audio dataset created.")
# Load pretrained Moonshine model.
audio_to_text = MoonshineAudioToText.from_preset("moonshine_tiny_en")
# Generation examples.
generated_text_single = audio_to_text.generate(
{"audio": single_audio_input_batched}
)
print(f"Generated text (single audio): {generated_text_single}")
generated_text_batch = audio_to_text.generate({"audio": audio_batch})
print(f"Generated text (batch audio): {generated_text_batch}")
# Compile the generate() function with a custom sampler.
audio_to_text.compile(sampler="top_k")
generated_text_top_k = audio_to_text.generate(
{"audio": single_audio_input_batched}
)
print(f"Generated text (top_k sampler): {generated_text_top_k}")
audio_to_text.compile(sampler="greedy")
generated_text_greedy = audio_to_text.generate(
{"audio": single_audio_input_batched}
)
print(f"Generated text (greedy sampler): {generated_text_greedy}")
# Fine-tuning example.
audio_to_text.compile(
optimizer=keras.optimizers.Adam(learning_rate=1e-5),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
weighted_metrics=[keras.metrics.SparseCategoricalAccuracy()],
)
history = audio_to_text.fit(audio_dataset, steps_per_epoch=1, epochs=1)
print(f"Fine-tuning completed. Training history: {history.history}")
# Detached preprocessing.
original_preprocessor = audio_to_text.preprocessor
audio_to_text.preprocessor = None
preprocessed_batch = original_preprocessor.generate_preprocess(
{"audio": audio_batch}
)
print(f"Preprocessed batch keys: {preprocessed_batch.keys()}")
stop_ids = (original_preprocessor.tokenizer.end_token_id,)
generated_batch_tokens = audio_to_text.generate(
preprocessed_batch, stop_token_ids=stop_ids
)
print(f"Generated tokens keys: {generated_batch_tokens.keys()}")
final_strings = original_preprocessor.generate_postprocess(
generated_batch_tokens
)
print(f"Final generated strings (detached): {final_strings}")
audio_to_text.preprocessor = original_preprocessor
print("Preprocessor reattached.")
```
## Example Usage with Hugging Face URI
```Python
import os
import keras
import keras_hub
import numpy as np
import librosa
import tensorflow as tf
from keras_hub.src.models.moonshine.moonshine_audio_to_text import (
MoonshineAudioToText,
)
# Custom backbone.
backbone = keras_hub.models.MoonshineBackbone(
vocabulary_size=10000,
filter_dim=256,
encoder_num_layers=6,
decoder_num_layers=6,
hidden_dim=256,
intermediate_dim=512,
encoder_num_heads=8,
decoder_num_heads=8,
feedforward_expansion_factor=4,
decoder_use_swiglu_activation=True,
encoder_use_swiglu_activation=False,
)
# Audio features as input (e.g., from MoonshineAudioConverter).
outputs = backbone(
{
"encoder_input_values": np.zeros((1, 16000, 1)),
"encoder_padding_mask": np.ones((1, 16000), dtype=bool),
"decoder_token_ids": np.zeros((1, 20), dtype=np.int32),
"decoder_padding_mask": np.ones((1, 20), dtype=bool),
}
)
# Config for test.
BATCH_SIZE = 2
AUDIO_PATH = "path/to/audio_file.wav"
# Load and prepare audio data.
audio, sr = librosa.load(AUDIO_PATH, sr=16000, mono=True)
audio_tensor = tf.expand_dims(audio, axis=-1)
audio_tensor = tf.convert_to_tensor(audio_tensor, dtype=tf.float32)
single_audio_input_batched = tf.expand_dims(audio_tensor, axis=0)
audio_batch = tf.repeat(single_audio_input_batched, BATCH_SIZE, axis=0)
dummy_texts = ["Sample transcription.", "Another sample transcription."]
# Create tf.data.Dataset.
audio_ds = tf.data.Dataset.from_tensor_slices(audio_batch)
text_ds = tf.data.Dataset.from_tensor_slices(dummy_texts)
audio_dataset = (
tf.data.Dataset.zip((audio_ds, text_ds))
.map(lambda audio, txt: {"audio": audio, "text": txt})
.batch(BATCH_SIZE)
)
print("Audio dataset created.")
# Load pretrained Moonshine model.
audio_to_text = MoonshineAudioToText.from_preset("hf://keras/moonshine_tiny_en")
# Generation examples.
generated_text_single = audio_to_text.generate(
{"audio": single_audio_input_batched}
)
print(f"Generated text (single audio): {generated_text_single}")
generated_text_batch = audio_to_text.generate({"audio": audio_batch})
print(f"Generated text (batch audio): {generated_text_batch}")
# Compile the generate() function with a custom sampler.
audio_to_text.compile(sampler="top_k")
generated_text_top_k = audio_to_text.generate(
{"audio": single_audio_input_batched}
)
print(f"Generated text (top_k sampler): {generated_text_top_k}")
audio_to_text.compile(sampler="greedy")
generated_text_greedy = audio_to_text.generate(
{"audio": single_audio_input_batched}
)
print(f"Generated text (greedy sampler): {generated_text_greedy}")
# Fine-tuning example.
audio_to_text.compile(
optimizer=keras.optimizers.Adam(learning_rate=1e-5),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
weighted_metrics=[keras.metrics.SparseCategoricalAccuracy()],
)
history = audio_to_text.fit(audio_dataset, steps_per_epoch=1, epochs=1)
print(f"Fine-tuning completed. Training history: {history.history}")
# Detached preprocessing.
original_preprocessor = audio_to_text.preprocessor
audio_to_text.preprocessor = None
preprocessed_batch = original_preprocessor.generate_preprocess(
{"audio": audio_batch}
)
print(f"Preprocessed batch keys: {preprocessed_batch.keys()}")
stop_ids = (original_preprocessor.tokenizer.end_token_id,)
generated_batch_tokens = audio_to_text.generate(
preprocessed_batch, stop_token_ids=stop_ids
)
print(f"Generated tokens keys: {generated_batch_tokens.keys()}")
final_strings = original_preprocessor.generate_postprocess(
generated_batch_tokens
)
print(f"Final generated strings (detached): {final_strings}")
audio_to_text.preprocessor = original_preprocessor
print("Preprocessor reattached.")
```
|