File size: 5,152 Bytes
c1998f9 9f488c3 e926d62 c1998f9 a475f2f 28d7838 a475f2f 28d7838 9f488c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
---
library_name: keras-hub
license: apache-2.0
language:
- en
tags:
- text-generation
- keras
pipeline_tag: text-generation
---
## Model Overview
An OPT decoder network.
This class implements a Transformer-based decoder model as described in
["OPT: Open Pre-trained Transformer Language Models"](https://arxiv.org/abs/2205.01068).
The default constructor gives a fully customizable, randomly initialized OPT
model with any number of layers, heads, and embedding dimensions. To load
preset architectures and weights, use the `from_preset()` constructor.
Disclaimer: Pre-trained models are provided on an "as is" basis, without
warranties or conditions of any kind. The underlying model is provided by a
third party and subject to a separate license, available
[here](https://github.com/facebookresearch/fairseq/).
__Arguments__
- __vocabulary_size__: int. The size of the token vocabulary.
- __num_layers__: int. The number of transformer decoder layers.
- __num_heads__: int. The number of attention heads for each transformer.
The hidden size must be divisible by the number of attention heads.
- __hidden_dim__: int. The hidden size of the transformer decoder layers.
- __intermediate_dim__: int. The output dimension of the first Dense layer in
a two-layer feedforward network for each transformer decoder layer.
- __dropout__: float. Dropout probability for the Transformer decoder.
- __max_sequence_length__: int. The maximum sequence length that this decoder
can consume. If `None`, `max_sequence_length` uses the value from
sequence length. This determines the variable shape for positional
embeddings.
## Example Usage
```python
import keras
import keras_hub
import numpy as np
```
Use `generate()` to do text generation.
```python
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_1.3b_en")
opt_lm.generate("I want to say", max_length=30)
# Generate with batched prompts.
opt_lm.generate(["This is a", "Where are you"], max_length=30)
```
Compile the `generate()` function with a custom sampler.
```python
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_1.3b_en")
opt_lm.compile(sampler="greedy")
opt_lm.generate("I want to say", max_length=30)
opt_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
opt_lm.generate("I want to say", max_length=30)
```
Use `generate()` without preprocessing.
```python
# Prompt the model with `5338, 318` (the token ids for `"Who is"`).
# Use `"padding_mask"` to indicate values that should not be overridden.
prompt = {
"token_ids": np.array([[5338, 318, 0, 0, 0]] * 2),
"padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
}
opt_lm = keras_hub.models.OPTCausalLM.from_preset(
"opt_1.3b_en",
preprocessor=None,
)
opt_lm.generate(prompt)
```
Call `fit()` on a single batch.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_1.3b_en")
opt_lm.fit(x=features, batch_size=2)
```
Call `fit()` without preprocessing.
```python
x = {
"token_ids": np.array([[1, 2, 3, 4, 5]] * 2),
"padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[2, 3, 4, 5, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1]] * 2)
opt_lm = keras_hub.models.OPTCausalLM.from_preset(
"opt_1.3b_en",
preprocessor=None,
)
opt_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```
## Example Usage with Hugging Face URI
```python
import keras
import keras_hub
import numpy as np
```
Use `generate()` to do text generation.
```python
opt_lm = keras_hub.models.OPTCausalLM.from_preset("hf://keras/opt_1.3b_en")
opt_lm.generate("I want to say", max_length=30)
# Generate with batched prompts.
opt_lm.generate(["This is a", "Where are you"], max_length=30)
```
Compile the `generate()` function with a custom sampler.
```python
opt_lm = keras_hub.models.OPTCausalLM.from_preset("hf://keras/opt_1.3b_en")
opt_lm.compile(sampler="greedy")
opt_lm.generate("I want to say", max_length=30)
opt_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
opt_lm.generate("I want to say", max_length=30)
```
Use `generate()` without preprocessing.
```python
# Prompt the model with `5338, 318` (the token ids for `"Who is"`).
# Use `"padding_mask"` to indicate values that should not be overridden.
prompt = {
"token_ids": np.array([[5338, 318, 0, 0, 0]] * 2),
"padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
}
opt_lm = keras_hub.models.OPTCausalLM.from_preset(
"hf://keras/opt_1.3b_en",
preprocessor=None,
)
opt_lm.generate(prompt)
```
Call `fit()` on a single batch.
```python
features = ["The quick brown fox jumped.", "I forgot my homework."]
opt_lm = keras_hub.models.OPTCausalLM.from_preset("hf://keras/opt_1.3b_en")
opt_lm.fit(x=features, batch_size=2)
```
Call `fit()` without preprocessing.
```python
x = {
"token_ids": np.array([[1, 2, 3, 4, 5]] * 2),
"padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[2, 3, 4, 5, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1]] * 2)
opt_lm = keras_hub.models.OPTCausalLM.from_preset(
"hf://keras/opt_1.3b_en",
preprocessor=None,
)
opt_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
``` |