File size: 6,810 Bytes
00fd396 8746c7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
library_name: keras-hub
pipeline_tag: text-generation
---
### Model Overview
# Model Summary
Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, the Qwen team released a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters.
## Qwen2.5 brings the following improvements upon Qwen2:
* Significantly more knowledge and has greatly improved capabilities in coding and mathematics, thanks to our specialized expert models in these domains.
* Significant improvements in instruction following, generating long texts (over 8K tokens), understanding structured data (e.g, tables), and generating structured outputs especially JSON. More resilient to the diversity of system prompts, enhancing role-play implementation and condition-setting for chatbots.
* Long-context Support up to 128K tokens and can generate up to 8K tokens.
* Multilingual support for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
For more details, please refer to Qwen [Blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/keras-team/keras-hub/tree/master/keras_hub/src/models/qwen), and [Documentation](https://qwen.readthedocs.io/en/latest/).
Weights are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE) . Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).
## Links
* [Qwen 2.5 Quickstart Notebook](https://www.kaggle.com/code/laxmareddypatlolla/qwen-quickstart-notebook)
* [Qwen 2.5 API Documentation](https://keras.io/keras_hub/api/models/qwen/)
* [Qwen 2.5 Model Card](https://qwenlm.github.io/blog/qwen2.5/)
* [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
* [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
## Installation
Keras and KerasHub can be installed with:
```
pip install -U -q keras-hub
pip install -U -q keras
```
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
## Presets
The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
| Preset name | Parameters | Description |
|---------------------------------------|------------|--------------------------------------------------------------------------------------------------------------|
| qwen2.5_0.5b_en | 0.5B | 24-layer Qwen model with 0.5 billion parameters. |
| qwen2.5_3b_en | 3.1B | 36-layer Qwen model with 3.1 billion parameters. |
| qwen2.5_7b_en | 7B | 48-layer Qwen model with 7 billion parameters. |
| qwen2.5_instruct_0.5b_en | 0.5B | Instruction fine-tuned 24-layer Qwen model with 0.5 billion parameters. |
| qwen2.5_instruct_32b_en | 32B | Instruction fine-tuned 64-layer Qwen model with 32 billion parameters. |
| qwen2.5_instruct_72b_en | 72B | Instruction fine-tuned 80-layer Qwen model with 72 billion parameters. |
## Example Usage
```Python
import keras
import keras_hub
import numpy as np
# Use generate() to do text generation.
qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset("qwen2.5_3b_en")
qwen_lm.generate("I want to say", max_length=30)
# Generate with batched prompts.
qwen_lm.generate(["This is a", "Where are you"], max_length=30)
# Compile the generate() function with a custom sampler.
qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset("qwen2.5_3b_en")
qwen_lm.compile(sampler="greedy")
qwen_lm.generate("I want to say", max_length=30)
qwen_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
qwen_lm.generate("I want to say", max_length=30)
# Use generate() without preprocessing.
# Prompt the model with `15191, 374` (the token ids for `"Who is"`).
# Use `"padding_mask"` to indicate values that should not be overridden.
prompt = {
"token_ids": np.array([[15191, 374, 0, 0, 0]] * 2),
"padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
}
qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset(
"qwen2.5_3b_en",
preprocessor=None,
)
qwen_lm.generate(prompt)
# Call fit() on a single batch.
features = ["The quick brown fox jumped.", "I forgot my homework."]
qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset("qwen2.5_3b_en")
qwen_lm.fit(x=features, batch_size=2)
# Call fit() without preprocessing.
x = {
"token_ids": np.array([[1, 2, 3, 4, 5]] * 2),
"padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[2, 3, 4, 5, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1]] * 2)
qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset(
"qwen2.5_3b_en",
preprocessor=None,
)
qwen_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```
## Example Usage with Hugging Face URI
```Python
import keras
import keras_hub
import numpy as np
# Use generate() to do text generation.
qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset("hf://keras/qwen2.5_3b_en")
qwen_lm.generate("I want to say", max_length=30)
# Generate with batched prompts.
qwen_lm.generate(["This is a", "Where are you"], max_length=30)
# Compile the generate() function with a custom sampler.
qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset("hf://keras/qwen2.5_3b_en")
qwen_lm.compile(sampler="greedy")
qwen_lm.generate("I want to say", max_length=30)
qwen_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
qwen_lm.generate("I want to say", max_length=30)
# Use generate() without preprocessing.
# Prompt the model with `15191, 374` (the token ids for `"Who is"`).
# Use `"padding_mask"` to indicate values that should not be overridden.
prompt = {
"token_ids": np.array([[15191, 374, 0, 0, 0]] * 2),
"padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
}
qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset(
"hf://keras/qwen2.5_3b_en",
preprocessor=None,
)
qwen_lm.generate(prompt)
# Call fit() on a single batch.
features = ["The quick brown fox jumped.", "I forgot my homework."]
qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset("hf://keras/qwen2.5_3b_en")
qwen_lm.fit(x=features, batch_size=2)
# Call fit() without preprocessing.
x = {
"token_ids": np.array([[1, 2, 3, 4, 5]] * 2),
"padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[2, 3, 4, 5, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1]] * 2)
qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset(
"hf://keras/qwen2.5_3b_en",
preprocessor=None,
)
qwen_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
```
|