Divyasreepat commited on
Commit
95c45f9
·
verified ·
1 Parent(s): 0fe93c1

Update README.md with new model card content

Browse files
Files changed (1) hide show
  1. README.md +161 -21
README.md CHANGED
@@ -2,24 +2,164 @@
2
  library_name: keras-hub
3
  pipeline_tag: text-generation
4
  ---
5
- This is a [`Qwen` model](https://keras.io/api/keras_hub/models/qwen) uploaded using the KerasHub library and can be used with JAX, TensorFlow, and PyTorch backends.
6
- This model is related to a `CausalLM` task.
7
-
8
- Model config:
9
- * **name:** qwen_backbone
10
- * **trainable:** True
11
- * **vocabulary_size:** 151936
12
- * **num_layers:** 24
13
- * **num_query_heads:** 14
14
- * **hidden_dim:** 896
15
- * **intermediate_dim:** 4864
16
- * **rope_max_wavelength:** 1000000.0
17
- * **rope_scaling_factor:** 1.0
18
- * **num_key_value_heads:** 2
19
- * **layer_norm_epsilon:** 1e-06
20
- * **dropout:** 0
21
- * **tie_word_embeddings:** True
22
- * **use_sliding_window_attention:** [False]
23
- * **sliding_window_size:** 32768
24
-
25
- This model card has been generated automatically and should be completed by the model author. See [Model Cards documentation](https://huggingface.co/docs/hub/model-cards) for more information.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: keras-hub
3
  pipeline_tag: text-generation
4
  ---
5
+ ### Model Overview
6
+ # Model Summary
7
+
8
+ Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, the Qwen team released a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters.
9
+
10
+ ## Qwen2.5 brings the following improvements upon Qwen2:
11
+
12
+ * Significantly more knowledge and has greatly improved capabilities in coding and mathematics, thanks to our specialized expert models in these domains.
13
+ * Significant improvements in instruction following, generating long texts (over 8K tokens), understanding structured data (e.g, tables), and generating structured outputs especially JSON. More resilient to the diversity of system prompts, enhancing role-play implementation and condition-setting for chatbots.
14
+ * Long-context Support up to 128K tokens and can generate up to 8K tokens.
15
+ * Multilingual support for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.
16
+
17
+
18
+ For more details, please refer to Qwen [Blog](https://qwenlm.github.io/blog/qwen2.5/), [GitHub](https://github.com/keras-team/keras-hub/tree/master/keras_hub/src/models/qwen), and [Documentation](https://qwen.readthedocs.io/en/latest/).
19
+
20
+ Weights are released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE) . Keras model code is released under the [Apache 2 License](https://github.com/keras-team/keras-hub/blob/master/LICENSE).
21
+
22
+ ## Links
23
+
24
+ * [Qwen 2.5 Quickstart Notebook](https://www.kaggle.com/code/laxmareddypatlolla/qwen-quickstart-notebook)
25
+ * [Qwen 2.5 API Documentation](https://keras.io/keras_hub/api/models/qwen/)
26
+ * [Qwen 2.5 Model Card](https://qwenlm.github.io/blog/qwen2.5/)
27
+ * [KerasHub Beginner Guide](https://keras.io/guides/keras_hub/getting_started/)
28
+ * [KerasHub Model Publishing Guide](https://keras.io/guides/keras_hub/upload/)
29
+
30
+ ## Installation
31
+
32
+ Keras and KerasHub can be installed with:
33
+
34
+ ```
35
+ pip install -U -q keras-hub
36
+ pip install -U -q keras
37
+ ```
38
+
39
+ Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
40
+
41
+ ## Presets
42
+
43
+ The following model checkpoints are provided by the Keras team. Full code examples for each are available below.
44
+
45
+ | Preset name | Parameters | Description |
46
+ |---------------------------------------|------------|--------------------------------------------------------------------------------------------------------------|
47
+ | qwen2.5_0.5b_en | 0.5B | 24-layer Qwen model with 0.5 billion parameters. |
48
+ | qwen2.5_3b_en | 3.1B | 36-layer Qwen model with 3.1 billion parameters. |
49
+ | qwen2.5_7b_en | 7B | 48-layer Qwen model with 7 billion parameters. |
50
+ | qwen2.5_instruct_0.5b_en | 0.5B | Instruction fine-tuned 24-layer Qwen model with 0.5 billion parameters. |
51
+ | qwen2.5_instruct_32b_en | 32B | Instruction fine-tuned 64-layer Qwen model with 32 billion parameters. |
52
+ | qwen2.5_instruct_72b_en | 72B | Instruction fine-tuned 80-layer Qwen model with 72 billion parameters. |
53
+
54
+ ## Example Usage
55
+ ```Python
56
+
57
+ import keras
58
+ import keras_hub
59
+ import numpy as np
60
+
61
+ # Use generate() to do text generation.
62
+ qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset("qwen2.5_instruct_0.5b_en")
63
+ qwen_lm.generate("I want to say", max_length=30)
64
+
65
+ # Generate with batched prompts.
66
+ qwen_lm.generate(["This is a", "Where are you"], max_length=30)
67
+
68
+ # Compile the generate() function with a custom sampler.
69
+ qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset("qwen2.5_instruct_0.5b_en")
70
+ qwen_lm.compile(sampler="greedy")
71
+ qwen_lm.generate("I want to say", max_length=30)
72
+ qwen_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
73
+ qwen_lm.generate("I want to say", max_length=30)
74
+
75
+ # Use generate() without preprocessing.
76
+ # Prompt the model with `15191, 374` (the token ids for `"Who is"`).
77
+ # Use `"padding_mask"` to indicate values that should not be overridden.
78
+ prompt = {
79
+ "token_ids": np.array([[15191, 374, 0, 0, 0]] * 2),
80
+ "padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
81
+ }
82
+
83
+ qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset(
84
+ "qwen2.5_instruct_0.5b_en",
85
+ preprocessor=None,
86
+ )
87
+ qwen_lm.generate(prompt)
88
+
89
+ # Call fit() on a single batch.
90
+ features = ["The quick brown fox jumped.", "I forgot my homework."]
91
+ qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset("qwen2.5_instruct_0.5b_en")
92
+ qwen_lm.fit(x=features, batch_size=2)
93
+
94
+ # Call fit() without preprocessing.
95
+ x = {
96
+ "token_ids": np.array([[1, 2, 3, 4, 5]] * 2),
97
+ "padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
98
+ }
99
+ y = np.array([[2, 3, 4, 5, 0]] * 2)
100
+ sw = np.array([[1, 1, 1, 1, 1]] * 2)
101
+
102
+ qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset(
103
+ "qwen2.5_instruct_0.5b_en",
104
+ preprocessor=None,
105
+ )
106
+ qwen_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
107
+
108
+ ```
109
+
110
+ ## Example Usage with Hugging Face URI
111
+
112
+ ```Python
113
+
114
+ import keras
115
+ import keras_hub
116
+ import numpy as np
117
+
118
+ # Use generate() to do text generation.
119
+ qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset("hf://keras/qwen2.5_instruct_0.5b_en")
120
+ qwen_lm.generate("I want to say", max_length=30)
121
+
122
+ # Generate with batched prompts.
123
+ qwen_lm.generate(["This is a", "Where are you"], max_length=30)
124
+
125
+ # Compile the generate() function with a custom sampler.
126
+ qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset("hf://keras/qwen2.5_instruct_0.5b_en")
127
+ qwen_lm.compile(sampler="greedy")
128
+ qwen_lm.generate("I want to say", max_length=30)
129
+ qwen_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
130
+ qwen_lm.generate("I want to say", max_length=30)
131
+
132
+ # Use generate() without preprocessing.
133
+ # Prompt the model with `15191, 374` (the token ids for `"Who is"`).
134
+ # Use `"padding_mask"` to indicate values that should not be overridden.
135
+ prompt = {
136
+ "token_ids": np.array([[15191, 374, 0, 0, 0]] * 2),
137
+ "padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
138
+ }
139
+
140
+ qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset(
141
+ "hf://keras/qwen2.5_instruct_0.5b_en",
142
+ preprocessor=None,
143
+ )
144
+ qwen_lm.generate(prompt)
145
+
146
+ # Call fit() on a single batch.
147
+ features = ["The quick brown fox jumped.", "I forgot my homework."]
148
+ qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset("hf://keras/qwen2.5_instruct_0.5b_en")
149
+ qwen_lm.fit(x=features, batch_size=2)
150
+
151
+ # Call fit() without preprocessing.
152
+ x = {
153
+ "token_ids": np.array([[1, 2, 3, 4, 5]] * 2),
154
+ "padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
155
+ }
156
+ y = np.array([[2, 3, 4, 5, 0]] * 2)
157
+ sw = np.array([[1, 1, 1, 1, 1]] * 2)
158
+
159
+ qwen_lm = keras_hub.models.Qwen2CausalLM.from_preset(
160
+ "hf://keras/qwen2.5_instruct_0.5b_en",
161
+ preprocessor=None,
162
+ )
163
+ qwen_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
164
+
165
+ ```